Application of Cellulose-Polyaniline Blends as Electrolytes of Lithium-Ion Battery

被引:0
|
作者
Safavi-Mirmahalleh, Seyedeh-Arefeh [1 ,2 ]
Salami-Kalajahi, Mehdi [1 ,2 ]
机构
[1] Sahand Univ Technol, Fac Polymer Engn, POB 513351996, Tabriz, Iran
[2] Sahand Univ Technol, Inst Polymer Mat, POB 513351996, Tabriz, Iran
基金
美国国家科学基金会;
关键词
cellulose; gel polymer electrolyte; lithium-ion batteries; polyaniline; GEL POLYMER ELECTROLYTE; ENERGY-STORAGE SYSTEMS; BACTERIAL CELLULOSE; NANOCOMPOSITES; CRYSTALLINE; MEMBRANE; DESIGN;
D O I
10.1002/aesr.202500021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Natural polymers offer several benefits as battery components, such as wide availability, biodegradability, non-leakage, stability in solid form, ease of processing, electrochemical stability, and low production costs. On the contrary, conductive polymers can enhance the battery's electrochemical performance, improving factors like energy storage capacity, cycling stability, and charge/discharge rates. Thus, combining these two types of materials can yield desirable properties. In this research, thin polymer films are produced based on cellulose using the solution casting method. Polyaniline (PANI) is then mixed with cellulose in various weight ratios. The electrochemical characteristics of the prepared electrolytes are analyzed, revealing that the addition of PANI increases ionic conductivity through creating voids and benefiting from the conductive polymers' high dielectric constant. The prepared electrolytes demonstrate impressive ionic conductivity (approximate to 10-3 S cm-1 upon incorporating PANI), remarkable discharge capacity, consistent cycling stability, outstanding electrochemical performance with a stability window exceeding 4.5 V, and a good Li+ transference number spanning from 0.44 to 0.76.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synthesis and evaluation of cellulose/polypyrrole composites as polymer electrolytes for lithium-ion battery application
    Safavi-Mirmahalleh, Seyedeh-Arefeh
    Eliseeva, Svetlana N.
    Moghaddam, Amir Rezvani
    Roghani-Mamaqani, Hossein
    Salami-Kalajahi, Mehdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 262
  • [2] Lithium borates for lithium-ion battery electrolytes
    Lex-Balducci, Alexandra
    Schmitz, Rene
    Schmitz, Raphael Wilhelm
    Mueller, Romek Ansgar
    Amereller, Marius
    Moosbauer, Dominik
    Gores, Heiner
    Winter, Martin
    RECHARGEABLE LITHIUM-ION BATTERIES, 2010, 25 (36): : 13 - 17
  • [3] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Leslie J. Lyons
    Scott Beecher
    Evan Cunningham
    Tom Derrah
    Shengyi Su
    Junmian Zhu
    Monica Usrey
    Adrián Peña-Hueso
    Tobias Johnson
    Robert West
    MRS Communications, 2019, 9 : 985 - 991
  • [4] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Lyons, Leslie J.
    Beecher, Scott
    Cunningham, Evan
    Derrah, Tom
    Su, Shengyi
    Zhu, Junmian
    Usrey, Monica
    Pena-Hueso, Adrian
    Johnson, Tobias
    West, Robert
    MRS COMMUNICATIONS, 2019, 9 (03) : 985 - 991
  • [5] A study on sulfites for lithium-ion battery electrolytes
    Yu, Bi Tao
    Qiu, Wei Hua
    Li, Fu Shen
    Cheng, Li
    JOURNAL OF POWER SOURCES, 2006, 158 (02) : 1373 - 1378
  • [6] Flammability parameters of lithium-ion battery electrolytes
    Swiderska-Mocek, A.
    Jakobczyk, P.
    Rudnicka, E.
    Lewandowski, A.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 318
  • [7] Fluorocyanoesters as Additives for Lithium-Ion Battery Electrolytes
    Walton, Joshua J.
    Hiasa, Takumi
    Kumita, Hideyuki
    Takeshi, Kazumasa
    Sandford, Graham
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15893 - 15902
  • [8] Silyl electrolytes for lithium-ion battery applications
    Lyons, Leslie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [9] Thermal stability of lithium-ion battery electrolytes
    Ravdel, B
    Abraham, KM
    Gitzendanner, R
    DiCarlo, J
    Lucht, B
    Campion, C
    JOURNAL OF POWER SOURCES, 2003, 119 : 805 - 810
  • [10] Properties of trifluoromethylated lithium borates for lithium-ion battery electrolytes
    Takahashi, Mikihiro
    Tsujioka, Shoichi
    Kawabata, Wataru
    Sai, Ryansu
    Tsutsumi, Hiromori
    Katayama, Yu
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (01):