Low-overhead quantum error-correction codes with a cyclic topology

被引:0
|
作者
Simakov, Ilya A. [1 ,2 ,3 ]
Besedin, Ilya S. [1 ,2 ,4 ]
机构
[1] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[2] Russian Quantum Ctr, Moscow 143025, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[4] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
基金
俄罗斯科学基金会;
关键词
D O I
10.1103/PhysRevA.111.012444
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum error correction is an important ingredient for scalable quantum computing. Stabilizer codes are one of the most promising and straightforward ways to correct quantum errors, are convenient for logical operations, and improve performance with increasing the number of qubits involved. Here, we propose a resource-efficient scaling of a five-qubit perfect code with increasing-weight cyclic stabilizers for small distances on the ring architecture, which takes into account the topological features of the superconducting platform. We show an approach to construct the quantum circuit of a correction code with ancillas entangled with non-neighboring data qubits. Furthermore, we introduce a neural network-based decoding algorithm supported by an improved lookup table decoder and provide a numerical simulation of the proposed code, which demonstrates the exponential suppression of the logical error rate.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
    陈秀波
    赵立云
    徐刚
    潘兴博
    陈思怡
    程振文
    杨义先
    Chinese Physics B, 2022, 31 (04) : 92 - 99
  • [2] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
    Chen, Xiu-Bo
    Zhao, Li-Yun
    Xu, Gang
    Pan, Xing-Bo
    Chen, Si-Yi
    Cheng, Zhen-Wen
    Yang, Yi-Xian
    CHINESE PHYSICS B, 2022, 31 (04)
  • [3] Quantum Error-Correction Codes on Abelian Groups
    Amini, Massoud
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2010, 5 (01): : 55 - 67
  • [4] Optimized quantum error-correction codes for experiments
    Nebendahl, V.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [5] Perturbative Stability and Error-Correction Thresholds of Quantum Codes
    Li, Yaodong
    O'Dea, Nicholas
    Khemani, Vedika
    PRX QUANTUM, 2025, 6 (01):
  • [6] Topological graph states and quantum error-correction codes
    Liao, Pengcheng
    Sanders, Barry C.
    Feder, David L.
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [7] Quantum error-correction using codes with low-density generator matrix
    Lou, HQ
    Garcia-Frias, J
    2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005, : 1043 - 1047
  • [8] A Quantum Error-Correction Circuit Based on Cyclic Code
    Lü Hongjun
    ZHANG Zhike
    XIE Guangjun
    WuhanUniversityJournalofNaturalSciences, 2013, 18 (05) : 413 - 417
  • [9] NP-hardness of decoding quantum error-correction codes
    Hsieh, Min-Hsiu
    Le Gall, Francois
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [10] Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code
    Noh, Kyungjoo
    Chamberland, Christopher
    Brandao, Fernando G. S. L.
    PRX QUANTUM, 2022, 3 (01):