Transcendental Julia sets of minimal Hausdorff dimension

被引:0
|
作者
Burkart, Jack [1 ]
Lazebnik, Kirill [2 ]
机构
[1] Bard Coll Simons Rock, 84 Alford Rd, Great Barrington, MA 01230 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
complex dynamics; dimension; interpolation; Julia sets; CONNECTED WANDERING DOMAINS;
D O I
10.1017/etds.2024.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of transcendental entire functions f: C -> C with Hausdorff-dimension 11 Julia sets, such that every Fatou component of f has infinite inner connectivity. We also show that there exist singleton complementary components of any Fatou component of f, answering a question of Rippon and Stallard [Eremenko points and the structure of the escaping set. Trans. Amer. Math. Soc. 372(5) (2019), 3083-3111]. Our proof relies on a quasiconformal-surgery approach developed by Burkart and Lazebnik [Interpolation of power mappings. Rev. Mat. Iberoam. 39(3) (2023), 1181-1200].
引用
收藏
页数:73
相关论文
共 50 条