Atomic Ru Species Driven SnO2-Based Sensor for Highly Sensitive and Selective Detection of H2S in the ppb-Level

被引:0
|
作者
Zheng, Mingjia [1 ]
Cheng, Youde [1 ]
Zhang, Xiuli [2 ]
Liu, Haonan [1 ]
Xu, Haiyan [1 ]
Dai, Xiangsu [1 ]
Shi, Guolong [1 ,3 ]
Rao, Yuan [1 ,3 ]
Gu, Lichuan [1 ,3 ]
Wang, Ming-Sheng [2 ]
Li, Chao [4 ]
Li, Ke [1 ,3 ]
机构
[1] Anhui Agr Univ, Sch Informat & Artificial Intelligence, Hefei 230036, Anhui, Peoples R China
[2] Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Anhui Agr Univ, Anhui Prov Agr Informat Percept & Intelligent Comp, Key Lab Agr Sensors, Anhui Prov Key Lab Smart Agr Technol & Equipment, Hefei 230036, Anhui, Peoples R China
[4] Zhejiang Ocean Univ, Natl Engn Res Ctr Marine Facil Aquaculture, Zhoushan 316004, Peoples R China
来源
ACS SENSORS | 2025年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
H2S sensor; SnO2; atomicRu species; highly sensitive; highly selective; ppb-level; GAS SENSOR; NANOFIBERS; SNO2;
D O I
10.1021/acssensors.4c02935
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Timely and accurate detection of H2S is crucial for preventing serious health issues in both humans and livestock upon exposure. However, metal-oxide-based H2S sensors often suffer from mediocre sensitivity, poor selectivity, or long response/recovery time. Here, an atomic Ru species-driven SnO2-based sensor is fabricated to realize highly sensitive and selective detection of H2S at the parts per billion level as low as 100 ppb. The sensor shows a high sensing response (R-air/R-gas = 310.1) and an ultrafast response time (less than 1 s) to 20 ppm H2S at an operating temperature of 160 degrees C. Operando SR-FTIR spectroscopic characterizations and DFT calculations prove that the superior sensing properties can be mainly attributed to the driven effect of atomic Ru species on the formation of surface-adsorbed oxygen species on the surface of SnO2, which provides more active sites and enhances the sensing performance of SnO2 for H2S. Furthermore, a lab-made wireless portable H2S monitoring system is developed to rapidly detect the H2S for early warning, suggesting the potential application of the fabricated H2S sensor and monitoring system. This work provides a novel approach for fabricating a highly sensitive and selective gas sensor driven by atomic metal species loaded on metal-oxide semiconductors.
引用
收藏
页码:1093 / 1104
页数:12
相关论文
共 50 条
  • [1] Room Temperature Mo2CTx MXene Sensor for Selective Detection of ppb-Level H2S
    Li, Ouhang
    Wang, Bo
    Liu, Yong
    Gao, Xinxin
    Zhang, Kan
    Sun, Peng
    Liu, Fangmeng
    Lu, Geyu
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2025,
  • [2] Sensitive, Selective, and Fast Detection of ppb-Level H2S Gas Boosted by ZnO-CuO Mesocrystal
    Yanan Guo
    Miaomiao Gong
    Yushu Li
    Yunling Liu
    Xincun Dou
    Nanoscale Research Letters, 2016, 11
  • [3] Sensitive, Selective, and Fast Detection of ppb-Level H2S Gas Boosted by ZnO-CuO Mesocrystal
    Guo, Yanan
    Gong, Miaomiao
    Li, Yushu
    Liu, Yunling
    Dou, Xincun
    NANOSCALE RESEARCH LETTERS, 2016, 11
  • [4] Highly selective ppb-level H2S sensor based on the walnut-like Bi2MoO6 at low temperature
    Zhang, Fangdou
    Xu, Yingming
    Zhang, Xianfa
    Sui, Lili
    Hu, Peng
    Zheng, Zhikun
    Cheng, Xiaoli
    Gao, Shan
    Zhao, Hui
    Huo, Lihua
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 277 : 312 - 319
  • [5] A trace ppb-level electrochemical H2S sensor based on ultrathin Pt nanotubes
    Zuo, Peng
    Wang, Ruixin
    Li, Fenghua
    Wu, Fengxia
    Xu, Guobao
    Niu, Wenxin
    TALANTA, 2021, 233
  • [6] A sensitive ppb-level NO2 sensor based on SnO2 decorated Te nanotubes
    Sun, Shupeng
    Li, Xinlei
    Wang, Nan
    Huang, Baoyu
    Li, Xiaogan
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 428
  • [7] Cadmium sulfide in-situ derived heterostructure hybrids with tunable component ratio for highly sensitive and selective detection of ppb-level H2S
    Gao, Yubing
    Kong, Dehao
    Han, Jiayin
    Zhou, Weirong
    Gao, Yuan
    Wang, Tianshuang
    Lu, Geyu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 627 : 332 - 342
  • [8] Achieving Room-Temperature ppb-Level H2S Detection in a Au-SnO2 Sensor with Low Voltage Enhancement Effect
    Deb, Moumita
    Lu, Chia-Jung
    Zan, Hsiao-Wen
    ACS SENSORS, 2024, 9 (09): : 4568 - 4577
  • [9] A highly sensitive ppb-level H2S gas sensor based on fluorophenoxy-substituted phthalocyanine cobalt/rGO hybrids at room temperature
    Wang, Bin
    Wang, Xiaolin
    Guo, ZhiJiang
    Gai, Shijie
    Li, Yong
    Wu, Yiqun
    RSC ADVANCES, 2021, 11 (11) : 5993 - 6001
  • [10] CUO-SNO2 ELEMENT FOR HIGHLY SENSITIVE AND SELECTIVE DETECTION OF H2S
    TAMAKI, J
    MAEKAWA, T
    MIURA, N
    YAMAZOE, N
    SENSORS AND ACTUATORS B-CHEMICAL, 1992, 9 (03) : 197 - 203