Design and Implementation of a Radar-Camera Fusion System for Human Detection and Its Distance Measurement

被引:0
|
作者
Mahayuda, Indra Putra [1 ]
Pratama, Allan Rizaldy [2 ]
Dewantara, Bima Sena Bayu [1 ]
Pramadihanto, Dadet [1 ]
机构
[1] Politekn Elekt Negeri Surabaya, Dept Informat & Comp Engn, Surabaya, Indonesia
[2] Univ Pembangunan Nasl Vet Jawa Timur, Fac Comp Sci, Data Sci Dept, Surabaya, Indonesia
关键词
Human Distance Detection; Sensor Fusion; Radar-Camera System; Instance Segmentation; Coordinate Transformation; TRACKING;
D O I
10.1109/IES63037.2024.10665849
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human distance detection is essential for improving safety and efficiency in applications such as autonomous vehicles, surveillance, and human-robot interaction. Integrating radar and camera data through sensor fusion significantly improves detection accuracy and reliability while reducing the inherent limitations of each sensor type. This research presents the design of a radar-camera fusion system that reads and processes data from both sources. Instance segmentation is used to identify objects for camera data, while radar data is projected to pixel coordinates through coordinate transformation, allowing the two data sets to be fused into the same space. This fusion results in more complete object information. The developed system achieved 100% object detection accuracy in the experimental scenario and demonstrated 93.4% distance measurement accuracy, with average longitudinal and latitudinal errors of 37.1 cm and 17.5 cm, respectively.
引用
收藏
页码:486 / 490
页数:5
相关论文
共 50 条
  • [1] Improving Radar-Camera Fusion Network for Distance Estimation
    Samuktha, V.
    Shukla, Hershita
    Kumar, Nitish
    Tejasri, N.
    Reddy, D. Santhosh
    Rajalakshmi, P.
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 23 - 29
  • [2] Interactive guidance network for object detection based on radar-camera fusion
    Jiapeng Wang
    Linhua Kong
    Dongxia Chang
    Zisen Kong
    Yao Zhao
    Multimedia Tools and Applications, 2024, 83 : 28057 - 28075
  • [3] Deep Learning-based Anomaly Detection in Radar Data with Radar-Camera Fusion
    Ning, Dian
    Han, Dong Seog
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 107 - 112
  • [4] Interactive guidance network for object detection based on radar-camera fusion
    Wang, Jiapeng
    Kong, Linhua
    Chang, Dongxia
    Kong, Zisen
    Zhao, Yao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28057 - 28075
  • [5] Radar-camera Fusion for Road Target Classification
    Aziz, Kheireddine
    De Greef, Eddy
    Rykunov, Maxim
    Bourdoux, Andre
    Sahli, Hichem
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [6] Radar-camera fusion for 3D object detection with aggregation transformer
    Li, Jun
    Zhang, Han
    Wu, Zizhang
    Xu, Tianhao
    APPLIED INTELLIGENCE, 2024, 54 (21) : 10627 - 10639
  • [7] Full-Velocity Radar Returns by Radar-Camera Fusion
    Long, Yunfei
    Morris, Daniel
    Liu, Xiaoming
    Castro, Marcos
    Chakravarty, Punarjay
    Narayanan, Praveen
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 16178 - 16187
  • [8] Attention Empowered Feature-level Radar-Camera Fusion for Object Detection
    Danapal, Gokulesh
    Mayr, Christian
    Kariminezhad, Ali
    Vriesmann, Daniel
    Zimmer, Alessandro
    2022 SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2022,
  • [9] Attention Empowered Feature-level Radar-Camera Fusion for Object Detection
    Danapal, Gokulesh
    Mayr, Christian
    Kariminezhad, Ali
    Vriesmann, Daniel
    Zimmer, Alessandro
    2022 SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2022,
  • [10] RCMixer: Radar-camera fusion based on vision transformer for robust object detection
    Wang, Lindong
    Tuo, Hongya
    Yuan, Yu
    Leung, Henry
    Jing, Zhongliang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2025, 107