Notes on double Roman domination edge critical graphs

被引:0
|
作者
Omar, Abdelhak [1 ]
Bouchou, Ahmed [1 ,2 ]
机构
[1] Univ Blida 1, Dept Math, LAMDA RO Lab, Blida, Algeria
[2] Univ Medea, Medea, Algeria
关键词
Double Roman domination; edge critical tree; edge supercritical graphs;
D O I
10.1051/ro/2025014
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E), a double Roman dominating function (DRDF) on a graph G is a function f : V -> {0, 1, 2, 3} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 3 or two vertices v1 and v2 for which f(v(1)) = f(v(2)) = 2, and every vertex u for which f(u) = 1 is adjacent to at least one vertex v for which f(v) >= 2. The weight w (f) of a double Roman dominating function f is the value w(f) = Sigma(u is an element of V) f(u). The minimum weight of a double Roman dominating function on a graph G is called the double Roman domination number of G, denoted by gamma(dR)(G). We say that G is gamma dR-edge critical, if gamma(dR)(G + e) < gamma(dR)(G) for each e is an element of E(<(G)over bar>), where (G) over bar is the complement of G, and k-gamma(dR)-edge supercritical if gamma(dR)(G) = k and gamma(dR)(G + e) = gamma(dR)(G) - 2 for every edge e is an element of E((G) over bar). In this paper, we characterize gamma(dR)-edge critical trees, answering a problem posed by Nazari-Moghaddam and Volkmann (Discrete Math. Algorithms App. 12 (2020) 2050020). Moreover, we investigate connected k-gamma(dR)-edge supercritical graphs for k is an element of {5, 6, 7, 8}.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 50 条
  • [1] Vertex and edge critical Roman domination in graphs
    Rad, Nader Jafari
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2013, 92 : 73 - 88
  • [2] Double domination edge critical graphs
    Haynes, Teresa W.
    Thacker, Derrick
    UTILITAS MATHEMATICA, 2009, 78 : 139 - 149
  • [3] Some notes on domination edge critical graphs
    Rad, Nader Jafari
    Jafari, Sayyed Heidar
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 485 - 488
  • [4] Critical concept for double Roman domination in graphs
    Nazari-Moghaddam, S.
    Volkmann, L.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [5] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [6] Double domination edge removal critical graphs
    Khelifi, Soufiane
    Blidia, Mostafa
    Chellali, Mustapha
    Maffray, Frederic
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 285 - 299
  • [7] Roman edge domination in graphs
    Soner, N. D.
    Chaluvaraju, B.
    Srivastava, J. P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2009, 79A : 45 - 50
  • [8] Edge Roman Domination on Graphs
    Chang, Gerard J.
    Chen, Sheng-Hua
    Liu, Chun-Hung
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1731 - 1747
  • [9] Edge Roman Domination on Graphs
    Gerard J. Chang
    Sheng-Hua Chen
    Chun-Hung Liu
    Graphs and Combinatorics, 2016, 32 : 1731 - 1747
  • [10] Edge roman domination in graphs
    Pushpam, P. Roushini Leely
    Malini Mai, T.N.M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 69 : 175 - 182