An Adaptive Implicit Hitting Set Algorithm for MAP and MPE Inference

被引:0
|
作者
Petrova, Aleksandra [1 ]
Larrosa, Javier [1 ]
Rollon, Emma [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
关键词
MAP and MPE inference; Implicit Hitting Set Approach; Multi-armed Bandit;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the use of the implicit hitting set approach (HS) for MAP (Markov Random Fields) and MPE (Bayesian Networks). Since the HS approach is quite general and finding the best version is very problem-dependent, here we present an adaptive algorithm that learns a reasonably good version for the instance being solved. The algorithm, which follows a Multi-armed Bandit structure, explores the different alternatives as it iterates and adapts their weights based on their performance. The weight is used to decide on the probability of selecting a given alternative in the next iteration.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 50 条
  • [1] A multi-GPU Hitting Set Algorithm for GRNs Inference
    Carastan-Santos, Danilo
    de Camargo, Raphael Y.
    Martins-, David C., Jr.
    Song, Siang W.
    Rozante, Luiz C. S.
    Borelli, Fabrizio F.
    2015 15TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING, 2015, : 313 - 322
  • [2] Algorithms for Implicit Hitting Set Problems
    Chandrasekaran, Karthekeyan
    Karp, Richard
    Moreno-Centeno, Erick
    Vempala, Santosh
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 614 - 629
  • [3] Possibilistic Networks: Computational Analysis of MAP and MPE Inference
    Levray, Amelie
    Benferhat, Salem
    Tabia, Karim
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (3-4)
  • [4] Lossy Kernelization for (Implicit) Hitting Set Problems
    Fomin, Fedor V.
    Le, Tien-Nam
    Lokshtanov, Daniel
    Saurabh, Saket
    Thomassé, Stéphan
    Zehavi, Meirav
    arXiv, 2023,
  • [5] Lossy Kernelization for (Implicit) Hitting Set Problems
    Fomin, Fedor V.
    Le, Tien-Nam
    Lokshtanov, Daniel
    Saurabh, Saket
    Thomassé, Stéphan
    Zehavi, Meirav
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 274
  • [6] Implicit Hitting Set Algorithms for Reasoning Beyond NP
    Saikko, Paul
    Wallner, Johannes P.
    Jarvisalo, Matti
    FIFTEENTH INTERNATIONAL CONFERENCE ON THE PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2016, : 104 - 113
  • [7] Abstract Cores in Implicit Hitting Set MaxSat Solving
    Berg, Jeremias
    Bacchus, Fahiem
    Poole, Alex
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, SAT 2020, 2020, 12178 : 277 - 294
  • [8] Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories
    Fazekas, Katalin
    Bacchus, Fahiem
    Biere, Armin
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 134 - 151
  • [9] Implicit Hitting Set Problems and Multi-genome Alignment
    Karp, Richard M.
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2010, 6129 : 151 - 151
  • [10] A randomised approximation algorithm for the hitting set problem
    El Ouali, Mourad
    Fohlin, Helena
    Srivastav, Anand
    THEORETICAL COMPUTER SCIENCE, 2014, 555 : 23 - 34