High performance piperidinium based anion exchange membranes with different twisted backbone structures for fuel cells

被引:1
|
作者
Liu, Ying Jie [1 ]
Zhang, Guo Liang [1 ]
Hu, Yong Qi [1 ]
Peng, Hui [1 ]
Lai, Li Wei [1 ]
Zhu, Ai Mei [1 ]
Zhang, Qiu Gen [1 ]
Liu, Qing Lin [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem & Biochem Engn, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Anion exchange membranes; Fused aromatic hydrocarbons; Twisted structures; Free volume; Transmission of OH-; QUATERNARY AMMONIUM CATIONS; ALKYLENE)S; POLYMERS;
D O I
10.1016/j.cej.2025.159693
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-performance anion exchange membranes (AEMs) can be widely used in anion exchange membrane fuel cells (AEMFCs), so improving the performance of membranes is the top priority. However, achieving ideal performance for AEMs remains a significant challenge. Herein, we structurally design the polymer backbone by introducing different fused aromatic hydrocarbons (anthracene, fluorene and phenanthrene) into the backbone to synthesize a series of main chain type AEMs with different degrees of twisting. The twisted structures reduce the chain stacking and increase the free volume in the membranes, thus providing a smooth channel for the transmission of OH- . Most importantly, compared with other twisted structures, the introduction of the phenanthrene structure not only makes the polymer have good membrane forming properties, but also improves the mechanical stability of the membranes. PPTP-DMP has excellent tensile strength (TS) and elongation at break (Eb) in both dry and wet states, and can still maintain 33.9 MPa TS and 86.9 % Eb after alkaline stability test. At the same time, PPTP-DMP also shows excellent OH- conductivity (167.3 mS cm- 1 , 80 degrees C). The PPTP-DMP-based single cell shows high peak power density (996.5 mW cm- 2 , 80 degrees C) and good durability after 100 h. In addition, the PFTP-DMP membrane has excellent alkaline stability, and the conductivity retention is 95.8 % after 1200 h in a 2 M NaOH solution (80 degrees C). Therefore, the newly developed AEMs have great application prospects in AEMFCs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High performance poly(carbazolyl aryl piperidinium) anion exchange membranes for alkaline fuel cells
    Yuan, Wei
    Zeng, Lingping
    Jiang, Shangkun
    Yuan, Caili
    He, Qian
    Wang, Jianchuan
    Liao, Qiang
    Wei, Zidong
    JOURNAL OF MEMBRANE SCIENCE, 2022, 657
  • [2] Anion Exchange Membrane with Pendulous Piperidinium on Twisted All-Carbon Backbone for Fuel Cell
    Zhang, Huaqing
    Song, Wanjie
    Sun, Lixuan
    Yang, Cui
    Zhang, Xin
    Wu, Mingyue
    Wu, Liang
    Ge, Xiaolin
    Xu, Tongwen
    MEMBRANES, 2024, 14 (06)
  • [3] Electrochemical performance of poly(arylene piperidinium) membranes and ionomers in anion exchange membrane fuel cells
    Novalin, Timon
    Pan, Dong
    Lindbergh, Goran
    Lagergren, Carina
    Jannasch, Patric
    Lindstrom, Rakel Wreland
    JOURNAL OF POWER SOURCES, 2021, 507
  • [4] High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells
    Gao, Wei Ting
    Gao, Xue Lang
    Gou, Wei Wei
    Wang, Jia Jun
    Cai, Zhi Hong
    Zhang, Qiu Gen
    Zhu, Ai Mei
    Liu, Qing Lin
    JOURNAL OF MEMBRANE SCIENCE, 2022, 655
  • [5] Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells
    Wu, Xingyu
    Chen, Nanjun
    Hu, Chuan
    Klok, Harm-Anton
    Lee, Young Moo
    Hu, Xile
    ADVANCED MATERIALS, 2023, 35 (26)
  • [6] Piperidinium-Based Anion-Exchange Membranes with an Aliphatic Main Chain for Alkaline Fuel Cells
    Xu, Fei
    Su, Yue
    Yuan, Wensen
    Han, Juanjuan
    Ding, Jianning
    Lin, Bencai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (33) : 14817 - 14824
  • [7] Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells
    Nanjun Chen
    Ho Hyun Wang
    Sun Pyo Kim
    Hae Min Kim
    Won Hee Lee
    Chuan Hu
    Joon Yong Bae
    Eun Seob Sim
    Yong-Chae Chung
    Jue-Hyuk Jang
    Sung Jong Yoo
    Yongbing Zhuang
    Young Moo Lee
    Nature Communications, 12
  • [8] Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells
    Chen, Nanjun
    Wang, Ho Hyun
    Kim, Sun Pyo
    Kim, Hae Min
    Lee, Won Hee
    Hu, Chuan
    Bae, Joon Yong
    Sim, Eun Seob
    Chung, Yong-Chae
    Jang, Jue-Hyuk
    Yoo, Sung Jong
    Zhuang, Yongbing
    Lee, Young Moo
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] A non-cationic crosslinking strategy to improve the performance of anion exchange membranes based on poly(aryl piperidinium) for fuel cells
    Huang, Jiaqiang
    Yu, Zongxue
    Tang, Junlei
    Wang, Pingquan
    Zhang, Xiuzhu
    Wang, Juan
    Lei, Xianzhang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 674
  • [10] Poly(aryl piperidinium) anion exchange membranes with cationic extender sidechain for fuel cells
    Yang, Lincan
    Wang, Zhiqian
    Wang, Fanghui
    Wang, Zhongming
    Zhu, Hong
    JOURNAL OF MEMBRANE SCIENCE, 2022, 653