APPROXIMATING RATIONAL POINTS ON SURFACES

被引:0
|
作者
Lehmann, Brian [1 ]
Mckinnon, David [2 ]
Satriano, Matthew [2 ]
机构
[1] Boston Coll, Dept Math, Fifth Floor,Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coba conjecture; Diophantine geometry; rational points; Vojta's conjecture;
D O I
10.1090/proc/17131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective algebraic variety over a number field k and P is an element of X(k). McKinnon [J. Algebraic Geom. 16 (2007), pp. 257-303] conjectured that, in a precise sense, if rational points on X are dense enough, then the best rational approximations to P must lie on a curve. We present a strategy for deducing a slightly weaker conjecture from Vojta's conjecture, and execute the strategy for the full conjecture for split surfaces.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 50 条