Progress in Research on Deep Learning-Based Crop Yield Prediction

被引:0
|
作者
Wang, Yuhan [1 ,2 ]
Zhang, Qian [2 ]
Yu, Feng [2 ]
Zhang, Na [1 ,3 ]
Zhang, Xining [2 ]
Li, Yuchen [1 ]
Wang, Ming [2 ]
Zhang, Jinmeng [2 ]
机构
[1] Beijing Agr Univ, Coll Intelligent Sci & Engn, Beijing 102206, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Inst Data Sci & Agr Econ, Beijing 102206, Peoples R China
[3] Beijing Rural Remote Informat Serv Engn Technol Re, Beijing 102206, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 10期
关键词
deep learning; prediction model; crop yield prediction; NEURAL-NETWORKS; AGRICULTURE; MODEL;
D O I
10.3390/agronomy14102264
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In recent years, crop yield prediction has become a research hotspot in the field of agricultural science, playing a decisive role in the economic development of every country. Therefore, accurate and timely prediction of crop yields is of great significance for the national formulation of relevant economic policies and provides a reasonable basis for agricultural decision-making. The results obtained through prediction can selectively observe the impact of factors such as crop growth cycles, soil changes, and rainfall distribution on crop yields, which is crucial for predicting crop yields. Although traditional machine learning methods can obtain an estimated crop yield value and to some extent reflect the current growth status of crops, their prediction accuracy is relatively low, with significant deviations from actual yields, and they fail to achieve satisfactory results. To address these issues, after in-depth research on the development and current status of crop yield prediction, and a comparative analysis of the advantages and problems of domestic and foreign yield prediction algorithms, this paper summarizes the methods of crop yield prediction based on deep learning. This includes analyzing and summarizing existing major prediction models, analyzing prediction methods for different crops, and finally providing relevant views and suggestions on the future development direction of applying deep learning to crop yield prediction research.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Hybrid Deep Learning-based Models for Crop Yield Prediction
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [2] Fuzzy deep learning-based crop yield prediction model for sustainable agronomical frameworks
    Dhivya Elavarasan
    P. M. Durai Raj Vincent
    Neural Computing and Applications, 2021, 33 : 13205 - 13224
  • [3] Fuzzy deep learning-based crop yield prediction model for sustainable agronomical frameworks
    Elavarasan, Dhivya
    Vincent, P. M. Durai Raj
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13205 - 13224
  • [4] Machine Learning-based Crop Yield Prediction by Data Augmentation
    Balmumcu, Alper
    Kayabol, Koray
    Erten, Esra
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [5] ResDeepGS: A Deep Learning-Based Method for Crop Phenotype Prediction
    Yan, Chaokun
    Li, Jiabao
    Feng, Qi
    Luo, Junwei
    Luo, Huimin
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024, 2024, 14955 : 470 - 481
  • [6] Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges
    Meghraoui, Khadija
    Sebari, Imane
    Pilz, Juergen
    El Kadi, Kenza Ait
    Bensiali, Saloua
    TECHNOLOGIES, 2024, 12 (04)
  • [7] Crop Yield Prediction Using Deep Learning
    Jeny, J. R. V.
    Divya, Phulari
    Varsha, Kolanu
    Mrunalini, Anantha
    Irfan, S. K. M.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 1192 - 1199
  • [8] Research on Deep Learning-Based Financial Risk Prediction
    Huang, Boning
    Wei, Junkang
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [9] DeepCrop: Deep learning-based crop disease prediction with web application
    Islam, Manowarul
    Adil, Abdul Ahad
    Talukder, Alamin
    Ahamed, Khabir Uddin
    Uddin, Ashraf
    Hasan, Kamran
    Sharmin, Selina
    Rahman, Mahbubur
    Debnath, Sumon Kumar
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 14
  • [10] Crop yield prediction utilizing multimodal deep learning
    Jacome-Galarza, Luis-Roberto
    PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,