Applications of nonlinear thermal radiation on performance of hybrid nanofluid (Al2O3-Ag)/(C2H6O2-H2O) for stagnation point flow: Blade and spherical shaped nanoparticles

被引:0
|
作者
Mary, G. Leena Rosalind [1 ]
Sreelakshmi, K. [1 ]
Adnan [2 ]
Khan, Sami Ullah [3 ]
Mir, Ahmed [4 ]
Alshammari, Badr M. [5 ]
Kolsi, Lioua [6 ]
机构
[1] Madanapalle Inst Technol & Sci, Madanapalle 517325, AP, India
[2] Mohi Ud Din Islamic Univ, Dept Math, Nerian Sharif 12080, Aj&k, Pakistan
[3] Namal Univ, Dept Math, Mianwali 42250, Pakistan
[4] Northern Border Univ, Coll Engn, Dept Chem & Mat Engn, Ar Ar, Saudi Arabia
[5] Univ Hail, Coll Engn, Dept Elect Engn, Hail 81451, Saudi Arabia
[6] Univ Hail, Coll Engn, Dept Mech Engn, Hail 81451, Saudi Arabia
关键词
Hybrid nanofluid; Heat transfer; Stagnation point flow; Non-linear thermal radiation; Shape factor; Stream contours; FLUID;
D O I
10.1016/j.jrras.2024.101171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Owing to enhanced thermal properties and stable features, the hybrid nanofluids offer dynamical applications in the renewable energy, heat exchangers, thermal management systems, power management systems, heavy heat transfer devices etc. The hybrid nanofluids are the combination of two different nanoparticles with base fluids with more strengthened thermal properties. The shape features play and important role in flow of hybrid nanofluids due to their influence on various key factors related to thermal phenomenon, fluid flow and system efficiency. The available research on hybrid nanofluids convey that less attention has been paid to towards investigation of various shape features like blade-shaped and spherical shape for performances of hybrid nanofluids. The motivated research aims to is to explore the thermal applications of magnetized hybrid nanomaterial with evaluation of distinct shape features. The hybrid nanofluid is assumed to be decomposition (50:50)% of ethylene glycol (C2H6O2) and water (H2O) based fluids with silver (Ag) and alumina (Al2O3) nanoparticles. The flow analysis is driven by obliquely driven stagnation point flow. The insight of heat transfer is addressed by incorporating the nonlinear radiative effects. The transport of heat transfer is addressed for bladeshaped and spherical nanoparticles. The convective thermal constraints are used for performing the analysis. The thermo-physical properties of hybrid nanomaterials are incorporated. The solution scheme for modelled equations is based in implementation of Runge Kutta Fehlberg (RKF 5) technique. It has been observed that thermal phenomenon boosted more exclusively for blade-shaped nanoparticles. The temperature profile for mono nanofluid and hybrid nanomaterial enhances due to nanoparticles volume fraction and Biot number.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Natural convection MHD flow due to MoS2-Ag nanoparticles suspended in C2H6O2-H2O hybrid base fluid with thermal radiation
    Ghadikolaei, S. S.
    Gholinia, M.
    Hoseini, M. E.
    Ganji, D. D.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 97 : 12 - 23
  • [2] MHD radiating flow in a hybrid solution of C2H6O2-H2O to disperse Ag-Al2O3 hybrid nanoparticles taking into account the effects of nanoparticle shapes
    Duari, P. R.
    Das, K.
    INDIAN JOURNAL OF PHYSICS, 2025, 99 (01) : 157 - 169
  • [3] Thermal characterization of porous longitudinal rectangular moving fin wetted with GO-MoS2-Al2O3/C2H6O2-H2O ternary hybrid nanofluid
    Pai, Ammembal Gopalkrishna
    Pai, Rekha G.
    COGENT ENGINEERING, 2024, 11 (01):
  • [4] A theoretical and comparative analysis of γAl2O3-H2O and γAl2O3-C2H6O2 nanoparticles with entropy generation and nonlinear radiation
    Khan, M. Ijaz
    Waqas, M.
    Hayat, T.
    Alsaedi, A.
    APPLIED NANOSCIENCE, 2019, 9 (05) : 1227 - 1238
  • [5] Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3-Ag/H2O hybrid nanofluid
    Iqbal, Z.
    Azhar, Ehtsham
    Maraj, E. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (12):
  • [6] Thermal performance of Falkner Skan model (FSM) for (GOMoS2)/(C2H6O2-H2O) 50:50% nanofluid under radiation heating source
    Bani-Fwaz, Mutasem Z.
    Adnan, Sami Ullah
    Khan, Sami Ullah
    Goud, B. Shankar
    Walelign, Tadesse
    Asogwa, Kanayo Kenneth
    Tlili, Iskander
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Unsteady stagnation point flow past a permeable stretching/shrinking Riga plate in Al2O3-Cu/H2O hybrid nanofluid with thermal radiation
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Joan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (08) : 2640 - 2658
  • [8] Cu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation
    Mahood, F.
    Yusuf, A.
    Khan, W. A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (02) : 973 - 984
  • [9] A theoretical and comparative analysis of γAl2O3–H2O and γAl2O3–C2H6O2 nanoparticles with entropy generation and nonlinear radiation
    M. Ijaz Khan
    M. Waqas
    T. Hayat
    A. Alsaedi
    Applied Nanoscience, 2019, 9 : 1227 - 1238
  • [10] Oblique Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O Hybrid Nanofluid
    Yahaya, Rusya Iryanti
    Arifin, Norihan Md
    Nazar, Roslinda Mohd
    Pop, Ioan
    SAINS MALAYSIANA, 2021, 50 (10): : 3139 - 3152