A twin CNN-based framework for optimized rice leaf disease classification with feature fusion

被引:0
|
作者
Prameetha Pai [1 ]
S. Amutha [2 ]
Mustafa Basthikodi [3 ]
B. M. Ahamed Shafeeq [4 ]
K. M. Chaitra [5 ]
Ananth Prabhu Gurpur [3 ]
机构
[1] B.M.S College of Engineering,Department of Computer Science & Engineering
[2] Dayananda Sagar College of Engineering,Department of Computer Science & Engineering
[3] Sahyadri College of Engineering & Management,Department of Computer Science & Engineering
[4] Manipal Academy of Higher Education,Department of Computer Science & Engineering, Manipal Institute of Technology
[5] Sahyadri College of Engineering & Management,Research Scholar, Department of Computer Science & Engineering
关键词
Rice leaf disease; Twin CNN; Feature fusion; Deep learning; Pre-trained CNN; Image classification;
D O I
10.1186/s40537-025-01148-z
中图分类号
学科分类号
摘要
This paper presents a novel Twin Convolutional Neural Network (CNN)-based framework for classifying rice leaf diseases. The framework integrates an optimized feature fusion algorithm using pre-trained CNN models to improve disease detection accuracy. Rice leaf images are processed to classify plants as either healthy or diseased with greater accuracy compared to conventional methods. Experiments conducted on publicly available datasets demonstrate that the proposed Twin CNN architecture, combined with a robust feature fusion mechanism, outperforms existing methods in terms of accuracy and computational efficiency. The proposed framework shows promising results for real-world applications in precision agriculture.
引用
收藏
相关论文
共 50 条
  • [1] A CNN-Based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification
    Guo, Alan J. X.
    Zhu, Fei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 7170 - 7181
  • [2] CNN-Based Feature Fusion Motor Fault Diagnosis
    Qian, Long
    Li, Binbin
    Chen, Lijuan
    ELECTRONICS, 2022, 11 (17)
  • [3] CNN-based fusion and classification of SAR and Optical data
    Shakya, Achala
    Biswas, Mantosh
    Pal, Mahesh
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (22) : 8839 - 8861
  • [4] Fusion Methods for CNN-Based Automatic Modulation Classification
    Zheng, Shilian
    Qi, Peihan
    Chen, Shichuan
    Yang, Xiaoniu
    IEEE ACCESS, 2019, 7 : 66496 - 66504
  • [5] Enhanced Segmentation with Optimized Nine-Layered CNN-Based Classification of Leaf Diseases: An Automatic Approach for Plant Disease Diagnosis
    Chillakuru, Prameeladevi
    Divya, D.
    Ananthajothi, K.
    CYBERNETICS AND SYSTEMS, 2024, 55 (08) : 1867 - 1902
  • [6] A CNN-based image detector for plant leaf diseases classification
    Falaschetti, Laura
    Manoni, Lorenzo
    Di Leo, Denis
    Pau, Danilo
    Tomaselli, Valeria
    Turchetti, Claudio
    HARDWAREX, 2022, 12
  • [7] Classification of Rice Leaf Diseases using CNN-based pre-trained models and transfer learning
    Mavaddat, Marjan
    Naderan, Marjan
    Alavi, Seyyed Enayatallah
    2023 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS, IPRIA, 2023,
  • [8] Hybrid feature optimized CNN for rice crop disease prediction
    Vijayan, S.
    Chowdhary, Chiranji Lal
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] CNN-Based UAV Detection and Classification Using Sensor Fusion
    Lee, Hunje
    Han, Sujeong
    Byeon, Jeong-Il
    Han, Seoulgyu
    Myung, Rangun
    Joung, Jingon
    Choi, Jihoon
    IEEE ACCESS, 2023, 11 : 68791 - 68808
  • [10] A Bayesian CNN-based fusion framework of sensor fault diagnosis
    He, Beiyan
    Zhu, Chunli
    Li, Zhongxiang
    Hu, Chun
    Zheng, Dezhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)