The Koebe conjecture and the Weyl problem for convex surfaces in hyperbolic 3-space

被引:0
|
作者
Luo, Feng [1 ]
Wu, Tianqi [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
关键词
Circle domains; Convex hull; Convex surfaces; Hyperbolic and conformal geometries; POLYHEDRAL SURFACES; UNIFORMIZATION;
D O I
10.1016/j.aim.2024.109969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain in the hyperbolic 3-space. Applications of the result to discrete conformal geometry will be discussed. The main tool we use is Schramm's transboundary extremal lengths.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] On the generalized Weyl problem for flat metrics in the hyperbolic 3-space
    Galvez, Jose A.
    Martinez, Antonio
    Teruel, Jose L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 144 - 150
  • [2] A Minkowski-type inequality for convex surfaces in the hyperbolic 3-space
    Natario, Jose
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 41 : 102 - 109
  • [3] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [4] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    Mathematische Annalen, 2000, 316 : 419 - 435
  • [5] CMC surfaces in the hyperbolic 3-space
    Yu, Z.
    Li, Z.
    Chinese Science Bulletin, 43 (07):
  • [6] HOROCYCLIC SURFACES IN HYPERBOLIC 3-SPACE
    Takizawa, Chie
    Tsukada, Kazumi
    KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (02) : 269 - 284
  • [7] CMC surfaces in the hyperbolic 3-space
    YU Zuhuan 1
    2. Department of Mathematics
    3. Department of Mathematics
    ChineseScienceBulletin, 1998, (07) : 547 - 550
  • [8] CMC surfaces in the hyperbolic 3-space
    Yu, ZH
    Li, ZQ
    CHINESE SCIENCE BULLETIN, 1998, 43 (07): : 547 - 550
  • [9] Rotational Weingarten surfaces in hyperbolic 3-space
    Dursun, Ugur
    JOURNAL OF GEOMETRY, 2020, 111 (01)
  • [10] A characterization of Weingarten surfaces in hyperbolic 3-space
    Georgiou, Nikos
    Guilfoyle, Brendan
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02): : 233 - 253