Circle domains;
Convex hull;
Convex surfaces;
Hyperbolic and conformal geometries;
POLYHEDRAL SURFACES;
UNIFORMIZATION;
D O I:
10.1016/j.aim.2024.109969
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain in the hyperbolic 3-space. Applications of the result to discrete conformal geometry will be discussed. The main tool we use is Schramm's transboundary extremal lengths.
机构:
Ochanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, JapanOchanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan
Takizawa, Chie
Tsukada, Kazumi
论文数: 0引用数: 0
h-index: 0
机构:
Ochanomizu Univ, Dept Math, Bunkyo Ku, Tokyo 1128610, JapanOchanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan
机构:
Isik Univ, Fac Arts & Sci, Dept Math, Sile Campus, TR-34980 Sile Istanbul, TurkeyIsik Univ, Fac Arts & Sci, Dept Math, Sile Campus, TR-34980 Sile Istanbul, Turkey