Unicity of meromorphic functions whose lower order is finite and noninteger

被引:0
|
作者
Zeng, Minling [1 ,2 ]
Zheng, Ruilin [3 ]
Wang, Ge [2 ]
Fang, Mingliang [1 ,2 ]
机构
[1] Shenzhen MSU BIT Univ, Dept Engn, Shenzhen 518172, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
[3] South China Agr Univ, Dept Math & Informat, Guangzhou 510642, Peoples R China
来源
SCIENCEASIA | 2024年 / 50卷 / 06期
关键词
meromorphic function; shared set; lower order; small function; UNIQUENESS; QUESTION; GROSS;
D O I
10.2306/scienceasia1513-1874.2024.091
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study unicity of meromorphic functions whose lower order is finite and noninteger and mainly prove: Let f and g be two nonconstant meromorphic functions, let n >= 6 be an integer, S = { z | ( n -1)(4 n -2) z n - n ( n -2) 2 z n -1 + n ( n -1) 4 z n -2 - 1 = 0}. If f and g share S , infinity CM, and the lower order off is finite and noninteger, then f equivalent to g . This answers a question posed by Gross for meromorphic functions whose lower order is finite and noninteger.
引用
收藏
页数:7
相关论文
共 50 条