Recent advances in deep learning have fostered a transition from the traditional, bit-centric paradigm of Shannon's information theory to a semantic-oriented approach, emphasizing the transmission of meaningful information rather than mere data fidelity. However, black-box AI-based semantic communication lacks structured discretization and remains dependent on analog modulation, which presents deployment challenges. This paper presents a new semantic-aware digital speech communication system, named Hybrid-DeepSCS, a stepping stone between traditional and fully end-to-end semantic communication. Our system comprises the following parts: a semantic encoder for extracting and compressing structured features, a standard transmitter for digital modulation including source and channel encoding, a standard receiver for recovering the bitstream, and a semantic decoder for expanding the features and reconstructing speech. By adding semantic encoding to a standard digital transmission, our system works with existing communication networks while exploring the potential of deep learning for feature representation and reconstruction. This hybrid method allows for gradual implementation, making it more practical for real-world uses like low-bandwidth speech, robust voice transmission over wireless networks, and AI-assisted speech on edge devices. The system's compatibility with conventional digital infrastructure positions it as a viable solution for IoT deployments, where seamless integration with legacy systems and energy-efficient processing are critical. Furthermore, our approach addresses IoT-specific challenges such as bandwidth constraints in industrial sensor networks and latency-sensitive voice interactions in smart environments. We test the system under various channel conditions using Signal-to-Distortion Ratio (SDR), PESQ, and STOI metrics. The results show that our system delivers robust and clear speech, connecting traditional wireless systems with the future of AI-driven communication. The framework's adaptability to edge computing architectures further underscores its relevance for IoT platforms, enabling efficient semantic processing in resource-constrained environments.