Enhanced gamma-ray emission from all-optical nonlinear inverse Compton scattering with down-ramp density plasma

被引:0
|
作者
Zhou, Hailong [1 ]
Yang, Lu [1 ]
Lan, Xiaofei [1 ]
Huang, Yongsheng [2 ,3 ]
He, Yangfan [1 ]
机构
[1] China West Normal Univ, Sch Phys & Astron, Nanchong 637009, Sichuan, Peoples R China
[2] Sun Yat Sen Univ, Sch Sci, Shenzhen 518107, Guangdong, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2025年
关键词
LASER; INTENSITY;
D O I
10.1140/epjs/s11734-025-01541-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The impressive progress in high-powered lasers has resulted in all-optical nonlinear inverse Compton scattering emerging as a potential method for generating ultra-short, brilliant gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} ray in a remarkably compact setup. Nonetheless, the conversion efficiency and energy of currently implemented Compton gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray sources are still low. We present three-dimensional particle-in-cell simulations investigating the gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray emission resulting from the interaction of a femtosecond laser pulse (I=5x1021\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I = 5 \times 10<^>{21}$$\end{document}W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{W/cm}<^>{2}$$\end{document}) with a down-ramp density plasma. Our study reveals that a down-ramp density plasma affects the self-injection of electrons, resulting in a lower self-injection threshold. Consequently, more electrons can be trapped in the wakefield for acceleration. The simulation results demonstrate the production of high-energy gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} ray with a maximum energy of E gamma,max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\gamma , \max }$$\end{document} = 148.18 MeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{MeV}$$\end{document} and a low emittance of theta gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\gamma }$$\end{document} = 4.2 mm<middle dot>mrad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{mm} \cdot \textrm{mrad} $$\end{document}. Compared to the scheme without down-ramp density plasma, the conversion efficiency of laser energy to photons is improved from approximately 0.13 to 0.29%. With this scheme, we can avoid using high-power laser pulses and generate high-energy gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} ray by using shaped-intensity laser pulses. This broadens the application range of all-optical Compton scattering.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] All-optical Compton gamma-ray source
    Phuoc, K. Ta
    Corde, S.
    Thaury, C.
    Malka, V.
    Tafzi, A.
    Goddet, J. P.
    Shah, R. C.
    Sebban, S.
    Rousse, A.
    NATURE PHOTONICS, 2012, 6 (05) : 308 - 311
  • [2] All-optical Compton gamma-ray source
    Ta Phuoc K.
    Corde S.
    Thaury C.
    Malka V.
    Tafzi A.
    Goddet J.P.
    Shah R.C.
    Sebban S.
    Rousse A.
    Corde, S. (sebastien.corde@polytechnique.edu), 2012, Nature Publishing Group (06) : 308 - 311
  • [3] INVERSE COMPTON EMISSION FROM THE PROMPT OPTICAL EMISSION REGION IN GAMMA-RAY BURSTS
    Zhao, X. H.
    Dai, Z. G.
    Liu, T.
    Bai, J. M.
    Peng, Z. Y.
    ASTROPHYSICAL JOURNAL, 2010, 708 (02): : 1357 - 1365
  • [4] Inverse Compton Scattering Spectra of Gamma-Ray Burst Prompt Emission
    Zhang, Yue
    Geng, Jin-Jun
    Huang, Yong-Feng
    ASTROPHYSICAL JOURNAL, 2019, 877 (02):
  • [5] Does the prompt γ-ray emission of gamma-ray bursts arise from resonant inverse Compton scattering?
    Chen, L.
    Liu, D. B.
    Huang, Y. F.
    You, J. H.
    ASTROPHYSICAL JOURNAL, 2008, 680 (01): : 539 - 544
  • [6] INVERSE COMPTON SCATTERING MODEL FOR X-RAY EMISSION OF THE GAMMA-RAY BINARY LS 5039
    Yamaguchi, M. S.
    Takahara, F.
    ASTROPHYSICAL JOURNAL, 2012, 761 (02):
  • [7] Compact Polarized X-Ray Source Based on All-Optical Inverse Compton Scattering
    Ma, Yue
    Hua, Jianfei
    Liu, Dexiang
    He, Yunxiao
    Zhang, Tianliang
    Chen, Jiucheng
    Yang, Fan
    Ning, Xiaonan
    Zhang, Hongze
    Du, Yingchao
    Lu, Wei
    PHYSICAL REVIEW APPLIED, 2023, 19 (01)
  • [8] Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime
    Gong, Z.
    Hu, R. H.
    Lu, H. Y.
    Yu, J. Q.
    Wang, D. H.
    Fu, E. G.
    Chen, C. E.
    He, X. T.
    Yan, X. Q.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (04)
  • [9] High energy afterglows and flares from gamma-ray burst by inverse Compton emission
    Galli, A.
    Piro, L.
    ASTRONOMY & ASTROPHYSICS, 2007, 475 (02) : 421 - 434
  • [10] All-optical generation of petawatt gamma radiation via inverse Compton scattering from laser interaction with tube target
    Long, T. Y.
    Zhou, C. T.
    Huang, T. W.
    Jiang, K.
    Ju, L. B.
    Zhang, H.
    Cai, T. X.
    Yu, M. Y.
    Qiao, B.
    Ruan, S. C.
    He, X. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (08)