3D cell culture models in research: applications to lung cancer pharmacology

被引:1
|
作者
Vella, Nathan [1 ]
Fenech, Anthony G. [1 ]
Magri, Vanessa Petroni [1 ]
机构
[1] Univ Malta, Fac Med & Surg, Dept Clin Pharmacol & Therapeut, Msida, Malta
关键词
3D cell culture; lung cancer; tumour microenvironment; pre-clinical models; drug screening; drug development; precision oncopharmacology; INFILTRATING IMMUNE CELLS; CLINICALLY RELEVANT MODEL; MULTICELLULAR SPHEROIDS; EXTRACELLULAR-MATRIX; CHRONIC INFLAMMATION; TARGETED THERAPY; ORGANOID MODELS; RESPONSES; PATHWAY; EVASION;
D O I
10.3389/fphar.2024.1438067
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Scaffold-based 3D cell culture models in cancer research
    Abuwatfa, Waad H.
    Pitt, William G.
    Husseini, Ghaleb A.
    JOURNAL OF BIOMEDICAL SCIENCE, 2024, 31 (01)
  • [2] Scaffold-based 3D cell culture models in cancer research
    Waad H. Abuwatfa
    William G. Pitt
    Ghaleb A. Husseini
    Journal of Biomedical Science, 31
  • [3] Metabolic Phenotypes in 3D Culture Cancer Cell Models
    Tabata, Sho
    Fujimoto, Ichiro
    Soga, Tomoyoshi
    Makinoshima, Hideki
    CANCER SCIENCE, 2025, 116 : 1352 - 1352
  • [4] Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research
    Park, Yujin
    Huh, Kang Moo
    Kang, Sun-Woong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (05) : 1 - 21
  • [5] Beyond 3D culture models of cancer
    Tanner, Kandice
    Gottesman, Michael M.
    SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (283)
  • [6] Analysis of 3D Cell Culture Models
    Larson, Brad
    Genetic Engineering and Biotechnology News, 2015, 35 (16): : 24 - 25
  • [7] Applications and evolution of 3D cancer-immune cell models
    Co, Ileana L.
    Fomina, Aleksandra
    Nurse, Michelle
    Mcguigan, Alison P.
    TRENDS IN BIOTECHNOLOGY, 2024, 42 (12) : 1615 - 1627
  • [8] Preserving lung cancer patient mutations in 3D organoid models: Advancing cancer research through innovative culture systems
    Park, Ji-Yeon
    Gu, Seo Rin
    Lee, Jiyeon
    Lee, Na-Gyeong
    Choi, Dojin
    Park, Sang Eun
    Kim, Ji Min
    Rheey, Jinguen
    CANCER RESEARCH, 2024, 84 (06)
  • [9] SERS in 3D cell models: a powerful tool in cancer research
    Troncoso-Afonso, Lara
    Vinnacombe-Willson, Gail A.
    Garcia-Astrain, Clara
    Liz-Marzan, Luis M.
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (10) : 5118 - 5148
  • [10] Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models
    Ozkan, Hande
    Ozturk, Deniz Gulfem
    Korkmaz, Gozde
    CANCERS, 2022, 14 (04)