Challenging the Performance-Interpretability Trade-Off: An Evaluation of Interpretable Machine Learning Models

被引:0
|
作者
Kruschel, Sven [1 ]
Hambauer, Nico [1 ]
Weinzierl, Sven [2 ]
Zilker, Sandra [2 ,3 ]
Kraus, Mathias [1 ]
Zschech, Patrick [4 ]
机构
[1] Univ Regensburg, Chair Explainable AI Business Value Creat, Bajuwarenstr 4, D-93053 Regensburg, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Digital Ind Serv Syst, Further Str 248, D-90429 Nurnberg, Germany
[3] TH Nurnberg Georg Simon Ohm, Professorship Business Analyt, Hohfederstr 40, D-90489 Nurnberg, Germany
[4] Univ Leipzig, Professorship Intelligent Informat Syst & Proc, Grimma Str 12, D-04109 Leipzig, Germany
关键词
Decision support; Predictive analytics; Interpretable machine learning; Generalized additive models; Explainable artificial intelligence; EXPLANATIONS; REGRESSION; AI;
D O I
10.1007/s12599-024-00922-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning is permeating every conceivable domain to promote data-driven decision support. The focus is often on advanced black-box models due to their assumed performance advantages, whereas interpretable models are often associated with inferior predictive qualities. More recently, however, a new generation of generalized additive models (GAMs) has been proposed that offer promising properties for capturing complex, non-linear patterns while remaining fully interpretable. To uncover the merits and limitations of these models, the study examines the predictive performance of seven different GAMs in comparison to seven commonly used machine learning models based on a collection of twenty tabular benchmark datasets. To ensure a fair and robust model comparison, an extensive hyperparameter search combined with cross-validation was performed, resulting in 68,500 model runs. In addition, this study qualitatively examines the visual output of the models to assess their level of interpretability. Based on these results, the paper dispels the misconception that only black-box models can achieve high accuracy by demonstrating that there is no strict trade-off between predictive performance and model interpretability for tabular data. Furthermore, the paper discusses the importance of GAMs as powerful interpretable models for the field of information systems and derives implications for future work from a socio-technical perspective.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] The performance-interpretability trade-off: a comparative study of machine learning models
    André Assis
    Jamilson Dantas
    Ermeson Andrade
    Journal of Reliable Intelligent Environments, 2025, 11 (1)
  • [2] IoT Botnet Detection using Black-box Machine Learning Models : the Trade-off between Performance and Interpretability
    Ben Rabah, Nourhene
    Le Grand, Benedicte
    Pinheiro, Manuele Kirsch
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 101 - 106
  • [3] Predicting supply chain risks using machine learning: The trade-off between performance and interpretability
    Baryannis, George
    Dani, Samir
    Antoniou, Grigoris
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 : 993 - 1004
  • [4] Automated Machine Learning for Studying the Trade-Off Between Predictive Accuracy and Interpretability
    Freitas, Alex A.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2019, 2019, 11713 : 48 - 66
  • [5] Hybrid learning models to get the interpretability–accuracy trade-off in fuzzy modeling
    Rafael Alcalá
    Jesús Alcalá-Fdez
    Jorge Casillas
    Oscar Cordón
    Francisco Herrera
    Soft Computing, 2006, 10 : 717 - 734
  • [6] Tackling the Accuracy-Interpretability Trade-off: Interpretable Deep Learning Models for Satellite Image-based Real Estate Appraisal
    Kucklick, Jan-Peter
    Mueller, Oliver
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
  • [7] Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling
    Alcalá, R
    Alcalá-Fdez, J
    Casillas, J
    Cordón, O
    Herrera, F
    SOFT COMPUTING, 2006, 10 (09) : 717 - 734
  • [8] Exploring accuracy and interpretability trade-off in tabular learning with novel attention-based models
    Kodjo Mawuena Amekoe
    Hanane Azzag
    Zaineb Chelly Dagdia
    Mustapha Lebbah
    Gregoire Jaffre
    Neural Computing and Applications, 2024, 36 (30) : 18583 - 18611
  • [9] Process-Material-Performance Trade-off Exploration of Materials Sintering with Machine Learning Models
    Kakanuru, Padmalatha
    Terway, Prerit
    Jha, Niraj
    Pochiraju, Kishore
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2024, : 927 - 941
  • [10] Exploring the Accuracy - Energy Trade-off in Machine Learning
    Brownlee, Alexander E., I
    Adair, Jason
    Haraldsson, Saemundur O.
    Jabbo, John
    2021 IEEE/ACM INTERNATIONAL WORKSHOP ON GENETIC IMPROVEMENT (GI 2021), 2021, : 11 - 18