Comparison of machine learning models to predict non -adherence to annual diabetic eye disease testing using clinical variables from electronic health records at an integrated healthcare system

被引:0
|
作者
Huang, Jane [1 ]
Sabit, Ahmed [2 ]
Wang, Jiangxia [1 ]
Liu, Alvin [1 ]
机构
[1] Johns Hopkins Med, Baltimore, MD USA
[2] Johns Hopkins Univ, Biostat, Baltimore, MD USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
3765
引用
收藏
页数:2
相关论文
共 24 条
  • [1] Investigating Non-Laboratory Variables to Predict Diabetic and Prediabetic Patients from Electronic Medical Records Using Machine Learning
    Mukhtar, Hamid
    Al Azwari, Sana
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (09): : 19 - 30
  • [2] MACHINE LEARNING BASED PREDICTION OF INCIDENT CASES OF CROHN'S DISEASE USING ELECTRONIC HEALTH RECORDS FROM A LARGE INTEGRATED HEALTH SYSTEM
    Hugo, Julian
    Ibing, Susanne
    Borchert, Florian
    Sachs, Jan P.
    Ungaro, Ryan C.
    Bottinger, Erwin P.
    GASTROENTEROLOGY, 2023, 164 (06) : S1170 - S1170
  • [3] Machine Learning Based Prediction of Incident Cases of Crohn's Disease Using Electronic Health Records from a Large Integrated Health System
    Hugo, Julian
    Ibing, Susanne
    Borchert, Florian
    Sachs, Jan Philipp
    Cho, Judy
    Ungaro, Ryan C.
    Boettinger, Erwin P.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 293 - 302
  • [4] Predicting Renal Function Decline From Readily Available Clinical Variables in Electronic Health Records Using Machine Learning
    Mathew, Roy O.
    Odigwe, Brendan E.
    Paudel, Sujay D.
    Odigwe, Celestine I.
    Fung, Enrica
    Norouzi, Sayna
    Infante, Sergio
    Pour, Amir Abdi
    Rangaswami, Janani
    Valafar, Homayoun
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 863 - 863
  • [5] Machine learning models to detect and predict patient safety events using electronic health records: A systematic review
    Deimazar, Ghasem
    Sheikhtaheri, Abbas
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 180
  • [6] A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
    Forrest, Iain S. S.
    Petrazzini, Ben O. O.
    Duffy, Aine
    Park, Joshua K. K.
    O'Neal, Anya J. J.
    Jordan, Daniel M. M.
    Rocheleau, Ghislain
    Nadkarni, Girish N. N.
    Cho, Judy H. H.
    Blazer, Ashira D. D.
    Do, Ron
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
    Iain S. Forrest
    Ben O. Petrazzini
    Áine Duffy
    Joshua K. Park
    Anya J. O’Neal
    Daniel M. Jordan
    Ghislain Rocheleau
    Girish N. Nadkarni
    Judy H. Cho
    Ashira D. Blazer
    Ron Do
    Nature Communications, 14
  • [8] Classification of patients with cardiac amyloidosis using machine learning models on Italian electronic clinical health records
    Mazzucato, Sara
    Bandini, Andrea
    Micera, Silvestro
    Vergaro, Giuseppe
    Dalmiani, Stefano
    Emdin, Michele
    Passino, Claudio
    Moccia, Sara
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [9] Machine learning models using symptoms and clinical variables to predict coronary artery disease on coronary angiography
    Yu, Yangjie
    Li, Weikai
    Wu, Jiajia
    Hua, Xuyun
    Jin, Bo
    Shi, Haiming
    Chen, Qiying
    Pan, Junjie
    POSTEPY W KARDIOLOGII INTERWENCYJNEJ, 2024, 20 (01): : 30 - 36
  • [10] Deep and machine learning models to improve risk prediction of cardiovascular disease using data extraction from electronic health records
    Korsakov, I.
    Gusev, A.
    Kuznetsova, T.
    Gavrilov, D.
    Novitskiy, R.
    EUROPEAN HEART JOURNAL, 2019, 40 : 1213 - 1213