More on Externally q-Hyperconvex Subsets of T 0-Quasi-Metric Spaces

被引:0
|
作者
Agyingi, Collins Amburo [1 ,2 ]
机构
[1] Univ South Africa, Dept Math Sci, Unisa 003,POB 392, Pretoria, South Africa
[2] African Ctr Adv Studies ACAS, POB 4477, Yaounde, Cameroon
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
基金
新加坡国家研究基金会;
关键词
quasi-metric space; q-hyperconvexity; external q-hyperconvexity; q-admissible subset;
D O I
10.37256/cm.5420243193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue earlier research on T 0-quasi-metric spaces which are externally q-hyperconvex. We focus on external q-hyperconvex subsets of T 0-quasi-metric spaces in particular. We demonstrate that a countable family of pairwise intersecting externally q-hyperconvex subsets has a non-empty intersection that is external q-hyperconvex under specific requirements on the underlying space (see Proposition 22). Last but not least, we demonstrate that if A is a subset of a supseparable and externally q-hyperconvex space Y , where Y subset of X , then A is also externally q-hyperconvex in X (Proposition 25).
引用
收藏
页码:4323 / 4332
页数:10
相关论文
共 50 条