共 50 条
More on Externally q-Hyperconvex Subsets of T 0-Quasi-Metric Spaces
被引:0
|作者:
Agyingi, Collins Amburo
[1
,2
]
机构:
[1] Univ South Africa, Dept Math Sci, Unisa 003,POB 392, Pretoria, South Africa
[2] African Ctr Adv Studies ACAS, POB 4477, Yaounde, Cameroon
来源:
基金:
新加坡国家研究基金会;
关键词:
quasi-metric space;
q-hyperconvexity;
external q-hyperconvexity;
q-admissible subset;
D O I:
10.37256/cm.5420243193
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We continue earlier research on T 0-quasi-metric spaces which are externally q-hyperconvex. We focus on external q-hyperconvex subsets of T 0-quasi-metric spaces in particular. We demonstrate that a countable family of pairwise intersecting externally q-hyperconvex subsets has a non-empty intersection that is external q-hyperconvex under specific requirements on the underlying space (see Proposition 22). Last but not least, we demonstrate that if A is a subset of a supseparable and externally q-hyperconvex space Y , where Y subset of X , then A is also externally q-hyperconvex in X (Proposition 25).
引用
收藏
页码:4323 / 4332
页数:10
相关论文