Tidal impacts on air-sea CO2 exchange on the North-West European shelf

被引:0
|
作者
Kossack, Jan [1 ]
Mathis, Moritz [1 ]
Daewel, Ute [1 ]
Liu, Feifei [1 ]
Demir, Kubilay Timur [1 ]
Thomas, Helmuth [2 ,3 ]
Schrum, Corinna [1 ,4 ]
机构
[1] Helmholtz Zentrum Hereon, Inst Coastal Syst, Geesthacht, Germany
[2] Helmholtz Zentrum Hereon, Inst Carbon Cycles, Geesthacht, Germany
[3] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Sea, Oldenburg, Germany
[4] Univ Hamburg, Inst Oceanog, Hamburg, Germany
关键词
NW Europe; tides; internal tides; marine carbon cycle; 3D coupled hydrodynamic-biogeochemical modeling; air-sea CO2 exchange; DISSOLVED INORGANIC CARBON; GLOBAL MONTHLY CLIMATOLOGY; CONTINENTAL-SHELF; TOTAL ALKALINITY; CELTIC SEA; PART II; OCEAN; MODEL; SYSTEM; DYNAMICS;
D O I
10.3389/fmars.2024.1406896
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tidal forcing is a dominant physical forcing mechanism on the Northwest European Shelf (NWES) that regulates the mixing-stratification status of the water column and thus acts as a major control for biological productivity and air-sea CO2 exchange. Tides further influence the marine carbon cycle on the shelf by affecting benthic-pelagic coupling, vertical mixing and the large-scale residual circulation. The cumulative tidal impact on oceanic uptake of atmospheric CO2 on the NWES, however, remains largely unexplored. We use a coupled physical-biogeochemical ocean model to gain quantitative understanding of the tidal impacts on the air-sea CO2 exchange of the NWES by comparing hindcast simulations with and without tidal forcing. Our results show that tidal forcing weakens the annual oceanic CO2 uptake on the NWES by 0.15 Tmol C yr-10.15 Tmol C yr(-1), corresponding to a similar to 13% stronger CO2 sink in the experiment without tidal forcing. The tide-induced increase in marine primary production demonstrated in earlier studies, which primarily enhances biological carbon fixation in shallow inner-shelf regions of the NWES, does not significantly affect net air-sea CO2 exchange. Instead, we find tidal mixing, tide-induced baroclinic circulation and the tidal impact on benthic-pelagic coupling to be dominant controls of air-sea CO2 exchange. Tidal mixing in the permanently mixed shelf regions accounts for the majority (similar to 40%) of the weakening effect on CO2 uptake, while the modulation of water mass composition in the Celtic Sea by tide-induced baroclinic circulation reduces the uptake further (similar to 33% of the difference in annual mean CO2 uptake). In terms of the shelf carbon budget, the tidal response of air-sea CO2 exchange is primarily mediated by changes to the pelagic DIC reservoir (similar to 73%; -0.11 Tmol C yr(-1)). Tidal impacts on off-shelf carbon export to the North Atlantic only account for similar to 20% (-0.03 Tmol C yr(-1)) of the tidal impact on shelf CO2 uptake, and changes in sedimentation of particulate organic carbon account for the remaining similar to 7% (-0.01 Tmol C yr(-1)).
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Air-sea exchange of CO2
    Kjeld, JF
    Larsen, SE
    MODELLING PHYSICAL AND CHEMICAL PROCESSES IN THE ATMOSPHERE, 1999, : 57 - 63
  • [2] Modelling terrigenous DOC across the north west European Shelf: Fate of riverine input and impact on air-sea CO2 fluxes
    Powley, Helen R.
    Polimene, Luca
    Torres, Ricardo
    Al Azhar, Muchamad
    Bell, Victoria
    Cooper, David
    Holt, Jason
    Wakelin, Sarah
    Artioli, Yuri
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [3] Air-sea CO2 fluxes on the Bering Sea shelf
    Bates, N. R.
    Mathis, J. T.
    Jeffries, M. A.
    BIOGEOSCIENCES, 2011, 8 (05) : 1237 - 1253
  • [4] CO2 exchange at air-sea interface in the Huanghai Sea
    Dong-Chan Oh
    Mi-Kyung
    Park
    Kyung-Ryul
    Kim (1. Department of Oceanography
    Acta Oceanologica Sinica, 2000, (01) : 79 - 89
  • [5] Air-Sea CO2 Exchange in the Ross Sea, Antarctica
    DeJong, Hans B.
    Dunbar, Robert B.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (10) : 8167 - 8181
  • [6] Air-Sea CO2 Exchange in the Strait of Gibraltar
    Curbelo-Hernandez, David
    Santana-Casiano, J. Magdalena
    Gonzalez, Aridane Gonzalez
    Gonzalez-Davila, Melchor
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [7] The air-sea exchange of CO2 in the East Sea (Japan Sea)
    Oh D.-C.
    Park M.-K.
    Choi S.-H.
    Kang D.-J.
    Park S.Y.
    Hwang J.S.
    Andreev A.
    Hong G.H.
    Kim K.-R.
    Journal of Oceanography, 1999, 55 (2) : 157 - 169
  • [8] Climate impacts on the structures of the North Pacific air-sea CO2 flux variability
    Valsala, V.
    Maksyutov, S.
    Telszewski, M.
    Nakaoka, S.
    Nojiri, Y.
    Ikeda, M.
    Murtugudde, R.
    BIOGEOSCIENCES, 2012, 9 (01) : 477 - 492
  • [9] Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
    Vassilis Kitidis
    Jamie D. Shutler
    Ian Ashton
    Mark Warren
    Ian Brown
    Helen Findlay
    Sue E. Hartman
    Richard Sanders
    Matthew Humphreys
    Caroline Kivimäe
    Naomi Greenwood
    Tom Hull
    David Pearce
    Triona McGrath
    Brian M. Stewart
    Pamela Walsham
    Evin McGovern
    Yann Bozec
    Jean-Philippe Gac
    Steven M. A. C. van Heuven
    Mario Hoppema
    Ute Schuster
    Truls Johannessen
    Abdirahman Omar
    Siv K. Lauvset
    Ingunn Skjelvan
    Are Olsen
    Tobias Steinhoff
    Arne Körtzinger
    Meike Becker
    Nathalie Lefevre
    Denis Diverrès
    Thanos Gkritzalis
    André Cattrijsse
    Wilhelm Petersen
    Yoana G. Voynova
    Bertrand Chapron
    Antoine Grouazel
    Peter E. Land
    Jonathan Sharples
    Philip D. Nightingale
    Scientific Reports, 9
  • [10] Air-sea gas exchange of CO2 and DMS in the North Atlantic by eddy covariance
    Miller, Scott
    Marandino, Christa
    de Bruyn, Warren
    Saltzman, Eric S.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36