ELEMENTARY PROOFS OF THE DIAMETER BOUNDS FOR POWER GRAPHS

被引:0
|
作者
Barbieri, Marco [1 ]
Rekvenyi, Kamilla [2 ,3 ]
机构
[1] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 5, I-27100 Pavia, Italy
[2] Univ Manchester, Dept Math, Manchester M13 9PL, England
[3] Heilbronn Inst Math Res, Bristol BS8 1UG, England
关键词
power graph; enhanced power graph; connected; diameter;
D O I
10.1017/S0004972724001382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the enhanced power graph and of the power graph are connected and have diameter at most $3$ .
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Diameter bounds for planar graphs
    Fulek, Radoslav
    Moric, Filip
    Pritchard, David
    DISCRETE MATHEMATICS, 2011, 311 (05) : 327 - 335
  • [2] SOME ELEMENTARY PROOFS OF LOWER BOUNDS IN COMPLEXITY THEORY
    VANLEEUWEN, J
    VANEMDEBOAS, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 19 (01) : 63 - 80
  • [3] Bounds on the Fault-Diameter of Graphs
    Dankelmann, Peter
    NETWORKS, 2017, 70 (02) : 132 - 140
  • [4] IMPROVED DIAMETER BOUNDS FOR ALTERED GRAPHS
    SCHOONE, AA
    BODLAENDER, HL
    VANLEEUWEN, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 246 : 227 - 236
  • [6] Bounds on the diameter of Cayley graphs of the symmetric group
    John Bamberg
    Nick Gill
    Thomas P. Hayes
    Harald A. Helfgott
    Ákos Seress
    Pablo Spiga
    Journal of Algebraic Combinatorics, 2014, 40 : 1 - 22
  • [7] Bounds on the diameter of Cayley graphs of the symmetric group
    Bamberg, John
    Gill, Nick
    Hayes, Thomas P.
    Helfgott, Harald A.
    Seress, Akos
    Spiga, Pablo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 1 - 22
  • [8] Logarithmic diameter bounds for some Cayley graphs
    Pham, Lam
    Zhang, Xin
    JOURNAL OF GROUP THEORY, 2022, 25 (02) : 327 - 342
  • [9] Bakry–Émery curvature and diameter bounds on graphs
    Shiping Liu
    Florentin Münch
    Norbert Peyerimhoff
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [10] Upper bounds for the domination number in graphs of diameter two
    Meierling, Dirk
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2014, 93 : 267 - 277