Skeleton-Based Action Recognition and Evaluation Using Dynamic Time Warping Algorithm Enhanced by Spatial-Temporal Feature Engineering Techniques

被引:0
|
作者
Chen, Shou-Hsuan [1 ]
Pan, Hong-Rui [1 ]
Lai, Shi-Yu [1 ]
机构
[1] Soochow Univ, Dept Data Sci, Taipei, Taiwan
关键词
Human action recognition; spatial-temporal feature; Dynamic time wrapping;
D O I
10.1109/ICCE-Taiwan62264.2024.10674354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Contemporary advancements in human action detection and recognition offer significant benefits by reducing professional workloads and empowering individuals with convenient and autonomous self-training opportunities. Our methodology revolves around extracting skeletal information from videos and extracting relative features. These features aim to capture not only the spatial relations among human skeleton joints but also valuable long-term temporal information. Furthermore, we utilize a dynamic time warping-based k-nearest neighbor algorithm to recognize and evaluate the similarity between individuals replicating exercises and the guidance provided by a reference instructor. This innovative approach enables effective home-based virtual coaching without the need for large-scale training data, thereby empowering users to reference and refine their movements independently.
引用
收藏
页码:795 / 796
页数:2
相关论文
共 50 条
  • [1] A Spatial-Temporal Feature Fusion Strategy for Skeleton-Based Action Recognition
    Chen, Yitian
    Xu, Yuchen
    Xie, Qianglai
    Xiong, Lei
    Yao, Leiyue
    2023 INTERNATIONAL CONFERENCE ON DATA SECURITY AND PRIVACY PROTECTION, DSPP, 2023, : 207 - 215
  • [2] Skeleton-based action recognition with local dynamic spatial-temporal aggregation
    Hu, Lianyu
    Liu, Shenglan
    Feng, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [3] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [4] Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition
    Wang, Shengqin
    Zhang, Yongji
    Qi, Hong
    Zhao, Minghao
    Jiang, Yu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2147 - 2152
  • [5] Dynamic spatial-temporal topology graph network for skeleton-based action recognition
    Chen, Lian
    Lu, Ke
    Niu, Zehai
    Wei, Runchen
    Xue, Jian
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [6] TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Liu, Haowei
    Liu, Yongcheng
    Chen, Yuxin
    Yuan, Chunfeng
    Li, Bing
    Hu, Weiming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4137 - 4148
  • [7] Learning Heterogeneous Spatial-Temporal Context for Skeleton-Based Action Recognition
    Gao, Xuehao
    Yang, Yang
    Wu, Yang
    Du, Shaoyi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12130 - 12141
  • [8] A Novel Spatial-Temporal Graph for Skeleton-based Driver Action Recognition
    Li, Peng
    Lu, Meiqi
    Zhang, Zhiwei
    Shan, Donghui
    Yang, Yang
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3243 - 3248
  • [9] Spatial-temporal graph attention networks for skeleton-based action recognition
    Huang, Qingqing
    Zhou, Fengyu
    He, Jiakai
    Zhao, Yang
    Qin, Runze
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (05)
  • [10] Focal and Global Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Gao, Zhimin
    Wang, Peitao
    Lv, Pei
    Jiang, Xiaoheng
    Liu, Qidong
    Wang, Pichao
    Xu, Mingliang
    Li, Wanqing
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 155 - 171