A Comprehensive Study on Hydrogen and Hybrid Electric Aircraft with Distributed Electric Propulsion

被引:0
|
作者
Nishikawa, Takaki [1 ]
Rinoie, Kenichi [1 ]
机构
[1] Univ Tokyo, Dept Aeronaut & Astronaut, Sch Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
With increasing environmental concerns, reducing CO2 emissions from transportation systems has become a priority. To this end, hybrid-electric and hydrogen combustion aircraft are explored. However, these aircraft are facing challenges in meeting the performance demands of conventional aircraft. Therefore, distributed electric propulsion (DEP) has gained attention owing to its potential to improve aerodynamics, take-off, and landing performance. Several conceivable concepts explore DEP. Although individual architectures, such as battery hybrid-electric architecture with DEP, have been well investigated, little research comprehensively compares the feasibility of each propulsion architecture. Hence, this study addresses the optimal design of a regional aircraft with hybrid-electric propulsion, considering several architectures, including hydrogen combustion and fuel cell electrification. Herein, three aircraft of different sizes were investigated to fulfill requirements comparable to the baseline aircraft. The goal is to understand the optimal architecture for aircraft with DEP in the context of environmental impact. The hybrid propulsion architectures, including hydrogen fueling, fuel cell, and battery electrification, are modeled using electrification factors. The aerodynamic effects of DEP are estimated using the actuator disk theory. Finally, the feasibility of each architecture with DEP is addressed, and each characteristic is investigated. The analysis underscores the advantageous role of the parallel hybrid with electric fans in reducing well-to-wake carbon intensity, highlighting the substantial contribution of DEP in minimizing the environmental impact. Additionally, the study emphasizes the considerable influence of the aspect ratio on the well-to-wake carbon index.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] System design of hybrid distributed electric propulsion aircraft
    Li, Jiacheng
    Sheng, Hanlin
    Chen, Xin
    Shi, Haolan
    Zhang, Tianhong
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (09):
  • [2] Review of distributed hybrid electric propulsion aircraft technology
    Zhu B.
    Yang X.
    Zong J.
    Deng X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (07):
  • [3] Electric/Hybrid-Electric Aircraft Propulsion Systems
    Wheeler, Patrick
    Sirimanna, Thusara Samith
    Bozhko, Serhiy
    Haran, Kiruba S.
    PROCEEDINGS OF THE IEEE, 2021, 109 (06) : 1115 - 1127
  • [4] Hybrid-Electric Propulsion for Aircraft
    Friedrich, C.
    Robertson, P. A.
    JOURNAL OF AIRCRAFT, 2015, 52 (01): : 176 - 189
  • [5] Hydrogen-Powered Aircraft Hydrogen-electric hybrid propulsion for aviation
    Gao, Yuan
    Lausseme, Charles
    Huang, Zhen
    Yang, Tao
    IEEE ELECTRIFICATION MAGAZINE, 2022, 10 (02): : 17 - 26
  • [6] Aeronautical hybrid propulsion for More Electric Aircraft: a case of study
    Fugaro, Federica
    Palmieri, Marco
    Cascella, Giuseppe Leonardo
    Cupertino, Francesco
    2018 AEIT INTERNATIONAL ANNUAL CONFERENCE, 2018,
  • [7] Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft
    Bravo, Guillem Moreno
    Praliyev, Nurgeldy
    Veress, Árpád
    Energy, 2021, 214
  • [8] Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft
    Moreno Bravo, Guillem
    Praliyev, Nurgeldy
    Veress, Arpad
    ENERGY, 2021, 214
  • [9] Preliminary Sizing Method for Hybrid-Electric Distributed-Propulsion Aircraft
    de Vries, Reynard
    Brown, Malcom
    Vos, Roelof
    JOURNAL OF AIRCRAFT, 2019, 56 (06): : 2172 - 2188
  • [10] Survey on design technology of distributed electric propulsion aircraft
    Huang J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (03):