Bifunctional Bi0.98Sm0.02FeO3/g-C3N4 Piezocatalyst for Simultaneous H2 and H2O2 Production

被引:0
|
作者
Zeng, Hua [1 ]
Liu, Chuanbao [1 ]
Lan, Bingxin [1 ]
Tan, Mengxi [1 ]
Yu, Chengye [1 ]
Su, Yanjing [1 ]
Qiao, Lijie [1 ]
Bai, Yang [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezocatalysis; BiFeO3; water splitting; H-2 and H2O2 production; PIEZOELECTRIC PROPERTIES; WATER;
D O I
10.1021/acsami.4c15127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Piezocatalysis portrays a promising alternative for producing hydrogen (H-2) and hydrogen peroxide (H2O2) in a clean and safe way, but the simultaneous enhancement of both properties remains challenging. In this study, a BiFeO3-based bifunctional piezocatalytic strategy via Sm doping and g-C3N4 compositing (Bi0.98Sm0.02FeO3/g-C3N4) was proposed for efficient simultaneous H-2 and H2O2 production. Benefiting from the synergistic effect between the optimized energy band structure and piezo-generated charges, the performances of hydrogen evolution reaction (HER) and water oxidation reaction (WOR) are both enhanced remarkably. As a result, the evolution rates of BSFO/g-C3N4 for pure water splitting into H-2 and H2O2 simultaneously reach 988 and 214 mu mol g(-1) h(-1) without any sacrificial agent, which is 4.6 and 7.6 times higher than those of pure BiFeO3. Theoretical calculations reveal the critical role of this optimization in reducing the adsorption energy barriers of HER and WOR intermediates by factors of 10.83 and 12.38, respectively. This study broadens new insight into the design of efficient piezocatalysts for water splitting.
引用
收藏
页码:70566 / 70574
页数:9
相关论文
共 50 条
  • [1] Cobalt clusters on g-C3N4 nanosheets for enhanced H2/H2O2 generation and NO removal
    Song, Tong
    Zhang, Xiao
    Matras-Postolek, Katarzyna
    Yang, Ping
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [2] The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment
    Qu, Xiaoyu
    Hu, Shaozheng
    Li, Ping
    Li, Zheng
    Wang, Hui
    Ma, Hongfei
    Li, Wei
    DIAMOND AND RELATED MATERIALS, 2018, 86 : 159 - 166
  • [3] Bi Nanoparticle/Bi4Ti3O12 Nanosheet/g-C3N4 Nanowire Heterojunction for the Piezocatalytic H2O2 Production
    Xu, Qianxin
    Zhang, Yang
    Lu, Dawei
    Zhang, Kai
    Lu, Meihong
    Liang, Jinzhe
    Qin, Yumei
    ACS APPLIED NANO MATERIALS, 2024, 7 (15) : 17379 - 17390
  • [4] K-N Bridge-Mediated charge separation in hollow g-C3N4 Frameworks: A bifunctional photocatalysts towards efficient H2 and H2O2 production
    Jin, Xiaoli
    Wang, Huiqing
    Lv, Xiongtao
    Lan, Qing
    Ge, Teng
    Guo, Lin
    Li, Xin
    Sun, Hongxian
    Ding, Chenghua
    Guo, Yuwei
    Xie, Haiquan
    Ye, Liqun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 1545 - 1553
  • [5] Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production
    Peng, Yulan
    Zhou, Liang
    Wang, Lingzhi
    Lei, Juying
    Liu, Yongdi
    Daniele, Stephane
    Zhang, Jinlong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (12) : 5907 - 5917
  • [6] Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production
    Yulan Peng
    Liang Zhou
    Lingzhi Wang
    Juying Lei
    Yongdi Liu
    Stéphane Daniele
    Jinlong Zhang
    Research on Chemical Intermediates, 2019, 45 : 5907 - 5917
  • [7] H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst
    Geng, Xinle
    Wang, Li
    Zhang, Lu
    Wang, Hui
    Peng, Yiyin
    Bian, Zhaoyong
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [8] Recyclable g-C3N4 and K-doped g-C3N4 pellets for the photocatalytic production of H2O2 under direct sunlight
    Kumar, Manisha S.
    Haripriya, P.
    Kumar, Darbha V. Ravi
    CHEMICAL PAPERS, 2024, 78 (15) : 8465 - 8472
  • [9] Enhanced solar-light driven H2O2 2 O 2 production with g-C3N4 3 N 4 nanosheets by defect engineering
    Sun, Yan
    Wang, Dongying
    Yang, Yong
    Zhao, Qianru
    Yang, Shanshan
    Luo, Xi
    Zhao, Qiang
    Zhang, Jin Zhong
    SURFACES AND INTERFACES, 2024, 51
  • [10] Review on synthesis and modification of g-C3N4 for photocatalytic H2 production
    Saman, Faten
    Ling, Celine Hee Se
    Ayub, Athirah
    Rafeny, Nur Husnina Bazilah
    Mahadi, Abdul Hanif
    Subagyo, Riki
    Nugraha, Reva Edra
    Prasetyoko, Didik
    Bahruji, Hasliza
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 77 : 1090 - 1116