Speech Recognition Using ARMA Model and Levenberg-Marquardt Algorithm

被引:0
|
作者
Jafari, Reza [1 ]
Jafari, Amir H. [2 ]
机构
[1] Virginia Tech Univ, Falls Church, VA 22043 USA
[2] George Washington Univ, Washington, DC 20052 USA
关键词
Speech recognition; Nonlinear optimization; Residual analysis;
D O I
10.1007/978-3-031-66336-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoregressive Moving Average (ARMA) is a simple linear model with memory that can be used for speech recognition problems. This is why, this paper utilized the derivation of ARMA model for the speech recognition. The flexibility of ARMA model helps in derivation of an accurate model that recognizes the pronunciation of letter B. The Generalized Partial Autocorrelation (GPAC) analysis has been used for the preliminary identification and the Maximum Likelihood Estimator (Levenberg-Marquardt) is used for the parameter estimations. Several models have been developed to recognize the letter B that are pronounced by a lady 30 times. The simplest model has been chosen at the end. The accuracy of the final model has been checked using chi(2) test.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [1] Distributed model calibration using Levenberg-Marquardt algorithm
    Lu, Mark
    Zhu, Liang
    Ling, Li
    Zhangb, Gary
    Chan, Walter
    Zhou, Xin
    OPTICAL MICROLITHOGRAPHY XX, PTS 1-3, 2007, 6520
  • [2] A Parallel Levenberg-Marquardt Algorithm
    Cao, Jun
    Novstrup, Krista A.
    Goyal, Ayush
    Midkiff, Samuel R.
    Caruthers, James M.
    ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2009, : 450 - 459
  • [3] Distributed localization using Levenberg-Marquardt algorithm
    Shervin Parvini Ahmadi
    Anders Hansson
    Sina Khoshfetrat Pakazad
    EURASIP Journal on Advances in Signal Processing, 2021
  • [4] Distributed localization using Levenberg-Marquardt algorithm
    Ahmadi, Shervin Parvini
    Hansson, Anders
    Pakazad, Sina Khoshfetrat
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [5] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)
  • [6] Emotion recognition using eigenvalues and Levenberg-Marquardt algorithm-based classifier
    Gaidhane, Vilas H.
    Hote, Yogesh V.
    Singh, Vijander
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (04): : 415 - 423
  • [7] Improvement of magnetometer calibration using Levenberg-Marquardt algorithm
    Pang, Hongfeng
    Chen, Dixiang
    Pan, Mengchun
    Luo, Shitu
    Zhang, Qi
    Li, Ji
    Luo, Feilu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 9 (03) : 324 - 328
  • [8] The Parallel Modification to the Levenberg-Marquardt Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Grzanek, Konrad
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 15 - 24
  • [9] Radar Target Detection by Using Levenberg-Marquardt Algorithm
    Nasret, Ali Najdet
    Kamal, Ayoub Esam
    Mahmood, Zuhiar Shakor
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (03): : 265 - 270
  • [10] Parameter extraction and optimization using Levenberg-Marquardt algorithm
    Duc-Hung, Le
    Cong-Kha, Pham
    Trang, Nguyen Thi Thien
    Tu, Bui Trong
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2012, : 434 - 437