Few-shot Hierarchical Text Classification with Bidirectional Path Constraint by label weighting

被引:0
|
作者
Zhang, Mingbao [1 ,2 ]
Song, Rui [4 ]
Li, Xiang [1 ,3 ]
Tavares, Adriano [1 ]
Xu, Hao [4 ]
机构
[1] Univ Minho, Braga, Portugal
[2] Neusoft Educ Technol Co Ltd, Shenyang, Peoples R China
[3] Dalian Neusoft Univ Informat, Dalian, Peoples R China
[4] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
关键词
Text analysis; Multi-label classification; Few-shot learning; Weakly-supervised learning;
D O I
10.1016/j.patrec.2025.01.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical Text Classification (HTC) organizes candidate labels into a hierarchical structure and uses one or more paths within the hierarchy as the ground-truth labels, which has been applied to various downstream tasks, e.g., sentiment analysis and harmful text detection. Existing works often involve data-driven models that are trained on large-scale datasets. However, creating annotated datasets is labor-intensive and timeconsuming. To address this issue, recent work has focused on the few-shot HTC task, where each class has only a few samples, e.g., 5. These approaches perform classification at each layer separately and leverage the prompt learning capability of pre-trained models like BERT. However, we find that these methods always neglect the inter-layer relationships. To solve this problem, we propose anew model called Bidirectional Path Constraint by Label Weighting (BPc-LW). Its basic idea is to use a pre-defined label embedding matrix and a feed-forward neural network for information propagation between layers, while also designing a bidirectional label weighting method to constrain the predictions of each layer to be along the same path in the label hierarchy. In addition, we employ a contrastive learning-based method to enhance the discriminative capacity of the hierarchical embeddings. We compare our proposed method with recent few-shot HTC baseline models across 3 benchmark datasets, and the experimental results demonstrate the effectiveness of BPc-LW.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification
    Ji, Ke
    Lian, Yixin
    Gao, Jingsheng
    Wang, Baoyuan
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 2918 - 2933
  • [2] Distinct Label Representations for Few-Shot Text Classification
    Ohashi, Sora
    Takayama, Junya
    Kajiwara, Tomoyuki
    Arase, Yuki
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 831 - 836
  • [3] Hierarchical Attention Prototypical Networks for Few-Shot Text Classification
    Sun, Shengli
    Sun, Qingfeng
    Zhou, Kevin
    Lv, Tengchao
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 476 - 485
  • [4] Label Hallucination for Few-Shot Classification
    Jian, Yiren
    Torresani, Lorenzo
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7005 - 7014
  • [5] Guiding Prototype Networks with label semantics for few-shot text classification
    Liu, Xinyue
    Gao, Yunlong
    Zong, Linlin
    Liang, Wenxin
    Xu, Bo
    PATTERN RECOGNITION, 2025, 164
  • [6] Label Semantic Aware Pre-training for Few-shot Text Classification
    Mueller, Aaron
    Krone, Jason
    Romeo, Salvatore
    Mansour, Saab
    Mansimov, Elman
    Zhang, Yi
    Roth, Dan
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 8318 - 8334
  • [7] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [8] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [9] Adversarial training for few-shot text classification
    Croce, Danilo
    Castellucci, Giuseppe
    Basili, Roberto
    INTELLIGENZA ARTIFICIALE, 2020, 14 (02) : 201 - 214
  • [10] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810