Automated PET Quantification of [18F]FDG PET Images for Neurodegenerative Disorders Research

被引:0
|
作者
Cataldo, Sol A. [1 ]
Sarmiento Laspiur, Florencia [1 ]
Belzunce, Martin A. [1 ,2 ]
机构
[1] Univ Nacl Gral San Martin, Escuela Ciencia & Tecnol, Inst Ciencias Fis ICIFI CONICET, Ctr Univ Imagenes Med CEUNIM,Ctr Complex Syst & B, Campus Miguelete,25 Mayo & Francia, RA-1650 San Martin, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina
关键词
PET; Neuroimaging; Alzheimer's Disease; ALZHEIMERS-DISEASE; BRAIN; REGISTRATION; SEGMENTATION; ATLAS;
D O I
10.1007/978-3-031-61973-1_37
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are important tools for the study of neurodegenerative diseases. Existing tools often perform preprocessing, registration and segmentation steps separately. In this work, we propose an integrated approach that combines these steps into a unified framework for the quantification of brain [F-18]FDG PET images. The proposed pipeline receives dynamic or static PET images and a high-resolution anatomical MRI image. The PET image is registered to the MRI and both are normalized into MNI152 space. Then, the uptake values of the PET image are normalized to the cerebellum uptake. Regional FDG uptake values are computed for each region of the Hammers' atlas. Finally, a quantitative synthetic image showing a hypometabolism/hypermetabolism map is generated using a FDG atlas of healthy individuals. The pipeline was evaluated with data from our imaging facilities and with a set of images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We successfully processed the local dataset and 29 of the 35 ADNI images. The 6 images that failed had problems in the spatial normalization to the MNI152 space. We found agreement in the metabolic patterns between the two AD dementia patients and, on the other hand, between the CN subject and the atlas. These results validated the pipeline and showed its consistency and robustness across different datasets. This automated pipeline provides quantitative metrics of regional [F-18]FDG uptake and hypometabolism maps, which can have multiple clinical and scientific applications.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [1] Robustness of radiomic features in [18F]-FDG PET/CT and [18F]-FDG PET/MR
    Vuong, D.
    Bogowicz, M.
    Huellner, M.
    Veit-Haibach, P.
    Andratschke, N.
    Unkelbach, J.
    Guckenberger, M.
    Tanadini-Lang, S.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (04) : S41 - S41
  • [2] A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images
    Sanaat, Amirhossein
    Boccalini, Cecilia
    Mathoux, Gregory
    Perani, Daniela
    Frisoni, Giovanni B.
    Haller, Sven
    Montandon, Marie-Louise
    Rodriguez, Cristelle
    Giannakopoulos, Panteleimon
    Garibotto, Valentina
    Zaidi, Habib
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (12) : 3518 - 3531
  • [3] Quantification of patient's tumor burden for the differentiation of lymphomas with [18F]FDG PET images
    Constantino, C. S.
    Leocadio, S.
    Oliveira, F. P. M.
    Silva, M.
    Oliveira, C.
    Castanheira, J. C.
    Silva, A.
    Vaz, S.
    Teixeira, R.
    Neves, M.
    Lucio, P.
    Joao, C.
    Costa, D. C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S410 - S411
  • [4] [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer
    Vrachimis, Alexis
    Burg, Matthias Christian
    Wenning, Christian
    Allkemper, Thomas
    Weckesser, Matthias
    Schaefers, Michael
    Stegger, Lars
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (02) : 212 - 220
  • [5] [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer
    Alexis Vrachimis
    Matthias Christian Burg
    Christian Wenning
    Thomas Allkemper
    Matthias Weckesser
    Michael Schäfers
    Lars Stegger
    European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43 : 212 - 220
  • [6] Robustness study on radiomic features in [18F]-FDG PET/CT and [18F]-FDG PET/MR
    Vuong, D.
    Bogowicz, M.
    Huellner, M.
    Veit-Haibach, P.
    Andratschke, N.
    Unkelbach, J.
    Guckenberger, M.
    Tanadini-Lang, S.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1159 - S1159
  • [7] Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR
    Diem Vuong
    Tanadini-Lang, Stephanie
    Huellner, Martin W.
    Veit-Haibach, Patrick
    Unkelbach, Jan
    Andratschke, Nicolaus
    Kraft, Johannes
    Guckenberger, Matthias
    Bogowicz, Marta
    MEDICAL PHYSICS, 2019, 46 (04) : 1677 - 1685
  • [8] Development of an automated pipeline for the analysis of [18 F]FDG-PET images in disorders of consciousness
    Sala, Arianna
    Schindele, Andreas
    Beliy, Nikita
    Bernard, Claire
    Panda, Rajanikant
    Phillips, Christophe
    Bahri, Mohamed Ali
    Hustinx, Roland
    Laureys, Steven
    Gosseries, Olivia
    Thibaut, Aurore
    Annen, Jitka
    BRAIN INJURY, 2023, 37 : 64 - 65
  • [9] [18F]FDG PET in hyperkinetic movement disorders: a systematic review
    Timmers, E.
    Klamer, M.
    Marapin, R.
    Lammertsma, A.
    De Jong, B.
    Dierckx, R.
    Tijssen, M.
    MOVEMENT DISORDERS, 2022, 37 : S39 - S39
  • [10] Deep learning based generation of high-count preclinical [18F]-FDG PET images from low-count [18F]-FDG PET images
    Dutta, Kaushik
    Whitehead, Timothy
    Laforest, Richard
    Jha, Abhinav
    Shoghi, Kooresh
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63