A Critical Comparison Between Template-Based and Architecture-Reused Deep Learning Methods for Generic 3D Landmarking of Anatomical Structures

被引:0
|
作者
Heredia-Lidon, Alvaro [1 ]
Garcia-Mascarell, Christian [1 ]
Echeverry-Quiceno, Luis M. [2 ]
Hostalet, Noemi [2 ,3 ,4 ]
Herrera-Escartin, Daniel [2 ]
Gonzalez, Alejandro [1 ]
Pomarol-Clotet, Edith [3 ,4 ]
Fortea, Juan [5 ]
Fatjo-Vilas, Mar [2 ,3 ,4 ]
Martinez-Abadias, Neus [2 ]
Sevillano, Xavier [1 ]
机构
[1] La Salle Univ Ramon Llull, HER Human Environm Res Grp, Barcelona, Spain
[2] Univ Barcelona UB, Fac Biol, Dept Biol Evolut Ecol & Ciencies Ambientals BEECA, Barcelona, Spain
[3] Sisters Hospitallers Res Fdn, FIDMAG, Barcelona, Spain
[4] Inst Salud Carlos III, CIBERSAM Biomed Res Network Mental Hlth, Madrid, Spain
[5] Hosp St Pau & Santa Creu, St Pau Memory Unit, Barcelona, Spain
来源
关键词
Automatic 3D landmarking; Geometric morphometrics; Multi-view convolutional networks; Template-based landmarking; Face; Upper respiratory airways; Hippocampus; Biomarkers; MORPHOMETRIC-ANALYSIS;
D O I
10.1007/978-3-031-75291-9_8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape alterations in body organs are common pathological hallmarks of multiple disorders, making quantitative shape analysis key for obtaining diagnostic and prognostic biomarkers. In this context, Geometric Morphometrics (GM) is a powerful approach to capture subtle yet significant dysmorphologies. Since GM relies on registering landmarks on 3D anatomical structures, developing generic, automatic and accurate 3D landmarking methods is key for building high-throughput morphometric tools. This study compares state-of-the-art deep learning and template-based 3D landmarking methods using MRI datasets of faces, upper airways, and hippocampi. We evaluated these methods in terms of landmarking error and morphometric variables relative to manual annotations. Our results show that architecture-reused deep learning methods are more accurate and faster in inference than template-based techniques, particularly for anatomical structures with high shape variability, even with fewer training examples.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 50 条
  • [1] Towards a Uniform Template-based Architecture for Accelerating 2D and 3D CNNs on FPGA
    Shen, Junzhong
    Huang, You
    Wang, Zelong
    Qiao, Yuran
    Wen, Mei
    Zhang, Chunyuan
    PROCEEDINGS OF THE 2018 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'18), 2018, : 97 - 106
  • [2] A Template-Based 3D Reconstruction of Colon Structures and Textures From Stereo Colonoscopic Images
    Zhang, Shuai
    Zhao, Liang
    Huang, Shoudong
    Ye, Menglong
    Hao, Qi
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2021, 3 (01): : 85 - 95
  • [3] Z-matrix template-based substitution approach for enumeration of 3D molecular structures
    Lorpaiboon, Wanutcha
    Limpanuparb, Taweetham
    METHODSX, 2021, 8
  • [4] Monocular template-based 3D surface reconstruction: Convex inextensible and nonconvex isometric methods
    Brunet, F.
    Bartoli, A.
    Hartley, R. I.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 125 : 138 - 154
  • [5] Multi-view 3D reconstruction based on deep learning: A survey and comparison of methods
    Wu, Juhao
    Wyman, Omar
    Tang, Yadong
    Pasini, Damiano
    Wang, Wenlong
    NEUROCOMPUTING, 2024, 582
  • [6] Multi-view 3D reconstruction based on deep learning: A survey and comparison of methods
    Wu, Juhao
    Wyman, Omar
    Tang, Yadong
    Pasini, Damiano
    Wang, Wenlong
    Neurocomputing, 2024, 582
  • [7] Toward an Efficient Deep Pipelined Template-Based Architecture for Accelerating the Entire 2-D and 3-D CNNs on FPGA
    Shen, Junzhong
    Huang, You
    Wen, Mei
    Zhang, Chunyuan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (07) : 1442 - 1455
  • [8] Automatic 3D fault detection and characterization - A comparison between seismic attribute methods and deep learning
    Brito, Lorenna Savilla B.
    Alaei, Behzad
    Torabi, Anita
    Leopoldino-Oliveira, Karen M.
    Vasconcelos, David Lino
    Bezerra, Francisco Hilario Rego
    Nogueira, Francisco Cezar Costa
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2023, 11 (04): : T793 - T808
  • [9] Classification of 3D Terracotta Warrior Fragments Based on Deep Learning and Template Guidance
    Gao, Hongjuan
    Geng, Guohua
    IEEE ACCESS, 2020, 8 : 4086 - 4098
  • [10] Classification of the brain metastases based on a new 3D deep learning architecture
    Cuskun, Yasin
    Kaplan, Kaplan
    Alparslan, Burcu
    Ertunc, H. Metin
    SOFT COMPUTING, 2023, 27 (22) : 17243 - 17256