Harris Hawk Optimized Interactive Multi-model Target Tracking Method Using Particle Filtering

被引:0
|
作者
Wei, Wei [1 ,2 ]
Li, Chen [3 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100083, Peoples R China
[2] Beihang Univ, Jiangxi Res Inst, Nanchang 330096, Jiangxi, Peoples R China
[3] Nanchang Hangkong Univ, Sch Aeronaut Mfg Engn, Nanchang 330063, Jiangxi, Peoples R China
关键词
Particle filtering; Harris hawk optimization algorithm; interactive multiple models; particle impoverishment;
D O I
10.1007/978-981-97-3948-6_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a Harris hawk-optimized particle filtering algorithm integrated with interactive multiple models for dynamic target tracking. The algorithm simulates the hunting behavior of individual Harris hawks to address particle impoverishment in traditional resampling processes. Additionally, it improves the hunting mechanism using strategies from the wolf pack algorithm, particularly enhancing global search. Furthermore, an interactive multiple model algorithm based on three motion models is designed and integrated. Simulation results demonstrate that the proposed algorithm outperforms existing methods in terms of accuracy and stability under varying noise intensities.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条
  • [1] Interactive Multi-model Target Maneuver Tracking Method Based on the Adaptive Probability Correction
    Ren, Jiadong
    Zhang, Xiaotong
    Sun, Jiandang
    Zeng, Qingshuang
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2018, PT II, 2018, 10942 : 235 - 245
  • [2] Multi-model noise suppression using particle filtering
    Jitsuhiro, Takatoshi
    Toriyama, Tomoji
    Kogure, Kiyoshi
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4397 - 4400
  • [3] Multi-target Tracking by Using Particle Filtering and a Social Force Model
    Ata-ur-Rehman
    Naqvi, Syed Mohsen
    Mihaylova, Lyudmila
    Chambers, Jonathon A.
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [4] A Multi-Model Particle Filtering Algorithm for Indoor Tracking of Mobile Terminals Using RSS Data
    Achutegui, Katrin
    Martino, Luca
    Rodas, Javier
    Escudero, Carlos J.
    Miguez, Joaquin
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1702 - +
  • [5] Multi-target tracking using hybrid particle filtering
    Rittscher, J
    Krahnstoever, N
    Galup, L
    WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2005, : 447 - 454
  • [6] Interactive Multi-model Tracking of a Highly Maneuvering Target using MSPDAF with Least Squares Virtual Fusion
    Tang, Qin
    Zhu, Fangqi
    Liang, Jing
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [7] Multi-sensor Interactive Multi-model PHD Filter for Maneuvering Multi-target Tracking
    Tian, Shurong
    Sun, Xiaoshu
    Sun, Xijing
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 200 - +
  • [8] An object tracking algorithm based on adaptive particle filtering and deep correlation multi-model
    Duan, Keke
    Yu, Yue
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [9] Target tracking using the interactive multiple model method
    Beijing Inst of Technology, Beijing, China
    J Beijing Inst Technol Engl Ed, 3 (299-304):
  • [10] A Particle Filtering Method for Radar Target Tracking
    Liang, Jianxing
    Chen, Qingliang
    Guo, Yunfeng
    Zhao, Zhen
    Lu, Sanhua
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 617 - 620