Forecasting Intradialytic Hypotension: A Comparative Analysis of Machine-Learning and Deep-Learning Approaches

被引:0
|
作者
Huang, Chun-Te [1 ,2 ]
机构
[1] Taichung Vet Gen Hosp, Taichung, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Yangming Campus, Taipei, Taiwan
来源
关键词
D O I
10.1681/ASN.2024ndm5wrnd
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
TH-PO016
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Music Genre Classification: A Review of Deep-Learning and Traditional Machine-Learning Approaches
    Ndou, Ndiatenda
    Ajoodha, Ritesh
    Jadhav, Ashwini
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 581 - 586
  • [2] Forecasting Stock Prices: A Comparative Analysis of Machine Learning, Deep Learning, and Statistical Approaches
    Gajjar, Kimi
    Choksi, Ami Tusharkant
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 179 - 192
  • [3] Comparing Deep-Learning Architectures and Traditional Machine-Learning Approaches for Satire Identification in Spanish Tweets
    Apolinario-Arzube, Oscar
    Garcia-Diaz, Jose Antonio
    Medina-Moreira, Jose
    Luna-Aveiga, Harry
    Valencia-Garcia, Rafael
    MATHEMATICS, 2020, 8 (11) : 1 - 23
  • [4] Medical Data Assessment with Traditional, Machine-learning and Deep-learning Techniques
    Lin, Hong
    Satapathy, Suresh Chandra
    Rajinikanth, V.
    CURRENT MEDICAL IMAGING, 2020, 16 (10) : 1185 - 1186
  • [5] Comparative Performance of Machine-Learning and Deep-Learning Algorithms in Predicting Gas-Liquid Flow Regimes
    Hafsa, Noor
    Rushd, Sayeed
    Yousuf, Hazzaz
    PROCESSES, 2023, 11 (01)
  • [6] Crop Contamination Forecasting Based on Machine-Learning Approaches
    V. K. Kalichkin
    O. K. Alsova
    K. Yu. Maksimovich
    N. V. Vasilyeva
    Russian Agricultural Sciences, 2022, 48 (2) : 115 - 122
  • [7] Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19
    Qaid, Talal S.
    Mazaar, Hussein
    Al-Shamri, Mohammad Yahya H.
    Alqahtani, Mohammed S.
    Raweh, Abeer A.
    Alakwaa, Wafaa
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [8] Machine-Learning Model to Predict the Intradialytic Hypotension Based on Clinical-Analytical Data
    Mendoza-Pitti, Luis
    Manuel Gomez-Pulido, Jose
    Vargas-Lombardo, Miguel
    Gomez-Pulido, Juan A.
    Polo-Luque, Maria-Luz
    Rodriguez-Puyol, Diego
    IEEE ACCESS, 2022, 10 : 72065 - 72079
  • [9] Machine Learning and Deep Learning Techniques for Residential Load Forecasting: A Comparative Analysis
    Shabbir, Noman
    Kutt, Lauri
    Raja, Hadi A.
    Ahmadiahangar, Roya
    Rosin, Argo
    Husev, Oleksandr
    2021 IEEE 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2021,
  • [10] Comparative Analysis on Machine Learning and Deep Learning to Predict Post-Induction Hypotension
    Lee, Jihyun
    Woo, Jiyoung
    Kang, Ah Reum
    Jeong, Young-Seob
    Jung, Woohyun
    Lee, Misoon
    Kim, Sang Hyun
    SENSORS, 2020, 20 (16) : 1 - 21