Spatiotemporal patterns in coupled reaction-diffusion systems with nonidentical kinetics

被引:0
|
作者
Fan, Wei-li [1 ]
Deng, Teng-kun [1 ]
Liu, Shuang [1 ]
Liu, Ruo-qi [1 ]
He, Ya-feng [1 ,2 ]
Liu, Ya-hui [1 ]
Liu, Yi-ning [1 ]
Liu, Fu-cheng [1 ,3 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
[2] Hebei Univ, Inst Environm Engn, Baoding 071002, Peoples R China
[3] Hebei Univ, Inst Life Sci & Green Dev, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
TURING PATTERNS;
D O I
10.1103/PhysRevE.111.024210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding of the effect of coupling interaction is at the heart of nonlinear science since some nonequilibrium systems are composed of different layers or units. In this paper, we demonstrate various spatio-temporal patterns in a nonlinearly coupled two-layer Turing system with nonidentical reaction kinetics. Both the type of Turing mode and coupling form play an important role in the pattern formation and pattern selection. Two kinds of Turing mode interactions, namely supercritical-subcritical and supercritical-supercritical Turing mode interaction, have been investigated. Stationary resonant superlattice patterns arise spontaneously in both cases, while dynamic patterns can also be formed in the latter case. The destabilization of spike solutions induced by spatial heterogeneity may be responsible for these dynamic patterns. In contrast to linear coupling, the nonlinear coupling not only increases the complexity of spatio-temporal patterns, but also reduces the requirements of spatial resonance conditions. The simulation results are in good agreement with the experimental observations in dielectric barrier discharge systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatiotemporal antiresonance in coupled reaction-diffusion systems
    Pal, Krishnendu
    Paul, Shibashis
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [2] Spatiotemporal chaos and quasipatterns in coupled reaction-diffusion systems
    Castelino, Jennifer K.
    Ratliff, Daniel J.
    Rucklidge, Alastair M.
    Subramanian, Priya
    Topaz, Chad M.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
  • [3] Coupled and forced patterns in reaction-diffusion systems
    Epstein, Irving R.
    Berenstein, Igal B.
    Dolnik, Milos
    Vanag, Vladimir K.
    Yang, Lingfa
    Zhabotinsky, Anatol M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864): : 397 - 408
  • [4] On the Spatiotemporal Pattern Formation in Nonlinear Coupled Reaction-Diffusion Systems
    Singh, Satyvir
    Msmali, Ahmed Hussein
    AXIOMS, 2023, 12 (11)
  • [5] Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems
    Kawamura, Yoji
    Shirasaka, Sho
    Yanagita, Tatsuo
    Nakao, Hiroya
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [6] Square Turing patterns in reaction-diffusion systems with coupled layers
    Li, Jing
    Wang, Hongli
    Ouyang, Qi
    CHAOS, 2014, 24 (02)
  • [7] Parametric spatiotemporal oscillation in reaction-diffusion systems
    Ghosh, Shyamolina
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [8] Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems
    Owolabi, Kolade M.
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2166 - 2189
  • [9] Oscillatory wave bifurcation and spatiotemporal patterns in fractional subhyperbolic reaction-diffusion systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
  • [10] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174