Rice Yield Prediction Using Spectral and Textural Indices Derived from UAV Imagery and Machine Learning Models in Lambayeque, Peru

被引:0
|
作者
Quille-Mamani, Javier [1 ]
Ramos-Fernandez, Lia [2 ]
Huanuqueno-Murillo, Jose [2 ]
Quispe-Tito, David [2 ]
Cruz-Villacorta, Lena [3 ,4 ]
Pino-Vargas, Edwin [5 ]
Flores del Pino, Lisveth [6 ]
Heros-Aguilar, Elizabeth [7 ]
Ruiz, Luis Angel [1 ]
机构
[1] Univ Politecn Valencia, Geoenvironm Cartog & Remote Sensing Grp CGAT, Cami Vera S-N, Valencia 46022, Spain
[2] Natl Agrarian Univ La Molina, Dept Water Resources, Lima 15024, Peru
[3] Univ Nacl Agr Molina, Dept Terr Planning, Lima 15024, Peru
[4] Univ Nacl Agr Molina, Doctoral Program Engn & Environm Sci, Lima 15024, Peru
[5] Jorge Basadre Grohmann Natl Univ, Dept Civil Engn, Tacna 23000, Peru
[6] Natl Agrarian Univ Molina, Ctr Res Chem Toxicol & Environm Biotechnol, Lima 15024, Peru
[7] Natl Agrarian Univ La Molina, Dept Phytotechn, Lima 15024, Peru
关键词
vegetation indices (VIs); textural indices (TIs); multiple linear regression (MLR); support vector regression (SVR); random forest (RF); cross-validation; machine learning; ABOVEGROUND BIOMASS;
D O I
10.3390/rs17040632
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Predicting rice yield accurately is crucial for enhancing farming practices and securing food supplies. This research aims to estimate rice yield in Peru's Lambayeque region by utilizing spectral and textural indices derived from unmanned aerial vehicle (UAV) imagery, which offers a cost-effective alternative to traditional approaches. UAV data collection in commercial areas involved seven flights in 2022 and ten in 2023, focusing on key growth stages such as flowering, milk, and dough, each showing significant predictive capability. Vegetation indices like NDVI, SP, DVI, NDRE, GNDVI, and EVI2, along with textural features from the gray-level co-occurrence matrix (GLCM) such as ENE, ENT, COR, IDM, CON, SA, and VAR, were combined to form a comprehensive dataset for model training. Among the machine learning models tested, including Multiple Linear Regression (MLR), Support Vector Machines (SVR), and Random Forest (RF), MLR demonstrated high reliability for annual data with an R2 of 0.69 during the flowering and milk stages, and an R2 of 0.78 for the dough stage in 2022. The RF model excelled in the combined analysis of 2022-2023 data, achieving an R2 of 0.58 for the dough stage, all confirmed through cross-validation. Integrating spectral and textural data from UAV imagery enhances early yield prediction, aiding precision agriculture and informed decision-making in rice management. These results emphasize the need to incorporate climate variables to refine predictions under diverse environmental conditions, offering a scalable solution to improve agricultural management and market planning.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru
    Goigochea-Pinchi, Diego
    Justino-Pinedo, Maikol
    Vega-Herrera, Sergio S.
    Sanchez-Ojanasta, Martin
    Lobato-Galvez, Roiser H.
    Santillan-Gonzales, Manuel D.
    Ganoza-Roncal, Jorge J.
    Ore-Aquino, Zoila L.
    Agurto-Pinarreta, Alex I.
    AGRIENGINEERING, 2024, 6 (03): : 2955 - 2969
  • [2] Peanut yield prediction with UAV multispectral imagery using a cooperative machine learning approach
    Shahi, Tej Bahadur
    Xu, Cheng-Yuan
    Neupane, Arjun
    Fleischfresser, Dayle B.
    O'Connor, Daniel J.
    Wright, Graeme C.
    Guo, William
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3343 - 3361
  • [3] SCALE-AWARE POMEGRANATE YIELD PREDICTION USING UAV IMAGERY AND MACHINE LEARNING
    Niu, Haoyu
    Wang, Dong
    Ehsani, Reza
    Chen, Yangquan
    JOURNAL OF THE ASABE, 2023, 66 (05): : 1331 - 1340
  • [4] Predicting Tree Mortality Using Spectral Indices Derived from Multispectral UAV Imagery
    Bergmueller, Kai O.
    Vanderwel, Mark C.
    REMOTE SENSING, 2022, 14 (09)
  • [5] Predicting canopy chlorophyll concentration in citronella crop using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery
    Khan, Mohammad Saleem
    Yadav, Priya
    Semwal, Manoj
    Prasad, Nupoor
    Verma, Rajesh Kumar
    Kumar, Dipender
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 219
  • [6] Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery
    Narmilan, Amarasingam
    Gonzalez, Felipe
    Salgadoe, Arachchige Surantha Ashan
    Kumarasiri, Unupen Widanelage Lahiru Madhushanka
    Weerasinghe, Hettiarachchige Asiri Sampageeth
    Kulasekara, Buddhika Rasanjana
    REMOTE SENSING, 2022, 14 (05)
  • [7] Explainable machine learning models for corn yield prediction using UAV multispectral data☆
    Kumar, Chandan
    Dhillon, Jagman
    Huang, Yanbo
    Reddy, Krishna
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [8] Garlic yield monitoring using vegetation indices and texture features derived from UAV multispectral imagery
    Marcone, Andrea
    Impollonia, Giorgio
    Croci, Michele
    Blandinieres, Henri
    Pellegrini, Niccolo
    Amaducci, Stefano
    SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [9] Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data
    Mia, Md. Suruj
    Tanabe, Ryoya
    Habibi, Luthfan Nur
    Hashimoto, Naoyuki
    Homma, Koki
    Maki, Masayasu
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    REMOTE SENSING, 2023, 15 (10)
  • [10] CROP CLASSIFICATION USING A COMBINATION OF SPECTRAL INDICES FROM SPATIOTEMPORAL MULTISPECTRAL IMAGERY AND MACHINE LEARNING
    Nofrizal, Adenan Yandra
    Sonobe, Rei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5820 - 5823