Dense Information Learning Based Semi-Supervised Object Detection

被引:0
|
作者
Yang, Xi [1 ]
Li, Penghui [2 ]
Zhou, Qiubai [1 ]
Wang, Nannan [1 ]
Gao, Xinbo [3 ,4 ]
机构
[1] Xidian Univ, Xian 710071, Peoples R China
[2] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311231, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
[4] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Training; Semisupervised learning; Perturbation methods; Detectors; Data models; Accuracy; Location awareness; Feature extraction; Electronics packaging; Dense information learning; relation consistency regularization; semi-supervised learning; object detection;
D O I
10.1109/TIP.2025.3530786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-Supervised Object Detection (SSOD) aims to improve the utilization of unlabeled data, and various methods, such as adaptive threshold techniques, have been extensively studied to increase exploitable information. However, these methods are passive, relying solely on the original image data. Additionally, existing approaches prioritize the predicted categories of the teacher model while overlooking the relationships between different categories in the prediction. In this paper, we introduce a novel approach called Dense Information Learning (DIL), which actively generates unlabeled data containing densely exploitable information and forces the network to have relation consistency under different perturbations. Specifically, Dense Information Augmentation (DIA) leverages the prior information of the network to create a foreground bank and actively incorporates exploitable information into the unlabeled data. DIA automatically performs information enhancement and filters noise. Furthermore, to encourage the network to maintain consistency at the manifold level under various perturbations, we introduce Relation Consistency Regularization (RCR). It considers both feature-level and image-level perturbations, guiding the network to focus on more discriminative features. Extensive experiments conducted on multiple datasets validate the effectiveness of our approach in leveraging information from unlabeled images. The proposed DIL improves the mAP by 12.6% and 10.0% relative to the supervised baseline method when utilizing 5% and 10% of labeled data on the MS-COCO dataset, respectively.
引用
收藏
页码:1022 / 1035
页数:14
相关论文
共 50 条
  • [1] Dense Learning based Semi-Supervised Object Detection
    Chen, Binghui
    Li, Pengyu
    Chen, Xiang
    Wang, Biao
    Zhang, Lei
    Hua, Xian-Sheng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4805 - 4814
  • [2] Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection
    Liu, Chang
    Zhang, Weiming
    Lin, Xiangru
    Zhang, Wei
    Tan, Xiao
    Han, Junyu
    Li, Xiaomao
    Ding, Errui
    Wang, Jingdong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15579 - 15588
  • [3] Semi-Supervised Active Learning for Object Detection
    Chen, Sijin
    Yang, Yingyun
    Hua, Yan
    ELECTRONICS, 2023, 12 (02)
  • [4] Consistency-based Semi-supervised Learning for Object Detection
    Jeong, Jisoo
    Lee, Seungeui
    Kim, Jeesoo
    Kwak, Nojun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Interpolation-based Semi-supervised Learning for Object Detection
    Jeong, Jisoo
    Verma, Vikas
    Hyun, Minsung
    Kannala, Juho
    Kwak, Nojun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11597 - 11606
  • [6] Proposal Learning for Semi-Supervised Object Detection
    Tang, Peng
    Ramaiah, Chetan
    Wang, Yan
    Xu, Ran
    Xiong, Caiming
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2290 - 2300
  • [7] Semi-supervised learning based object detection in aerial imagery
    Yao, J
    Zhang, ZF
    2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 1, Proceedings, 2005, : 1011 - 1016
  • [8] Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection
    Zhou, Hongyu
    Ge, Zheng
    Liu, Songtao
    Mao, Weixin
    Li, Zeming
    Yu, Haiyan
    Sun, Jian
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 35 - 50
  • [9] Object detection in aerial imagery based on enhanced semi-supervised learning
    Yao, J
    Zhang, ZF
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1012 - 1017
  • [10] Robust object detection for autonomous driving based on semi-supervised learning
    Wenwen Chen
    Jun Yan
    Weiquan Huang
    Wancheng Ge
    Huaping Liu
    Huilin Yin
    Security and Safety, 2024, 3 (04) : 18 - 43