Rectifying behavior of organic electrochemical transistors

被引:0
|
作者
Ilyassov, Baurzhan [1 ]
Zavgorodniy, Alexey [1 ]
Alekseev, Alexander [2 ]
Aldasheva, Laura [1 ]
机构
[1] Astana IT Univ, Mangilik 55-11,EXPO C1, Astana 010000, Kazakhstan
[2] Karaganda Buketov Univ, Ctr Nanotechnol & Funct Nanomat, Univ Str 28, Karaganda 100028, Kazakhstan
关键词
Organic electrochemical transistor; Organic mixed ionic-electronic conductor; Organic electrochemical rectifier; Current rectification; Asymmetry in IV characteristics; Polarity-switchable rectifier; poly(3-hexylthiophene-2,5-diyl); MORPHOLOGY;
D O I
10.1016/j.physb.2024.416620
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In organic electrochemical transistors (OECTs), the effective coupling of ionic and electronic charge carriers enables efficient modulation of current flow through an organic channel layer. This charge coupling imparts OECTs with unique properties, including high transconductance and low-voltage operation. Another distinctive characteristic of OECTs is the significant asymmetry observed in output curves at positive and negative drain biases. Despite extensive research on various properties of OECTs, the asymmetry in their output curves has received limited attention. This asymmetry is an inherent property of OECTs, stemming from their operational mechanism, and can be harnessed to create a new type of current rectifiers that can be classified as organic electrochemical rectifiers (OERs). In this study, we investigate the current rectification mechanism in OECTs and demonstrate that single accumulation-mode OECT can function as polarity-switchable rectifier. Utilizing Bernard's model for OECTs, we analyzed the rectification properties of OECTs and tested the rectification behavior of OECTs based on a poly(3-hexylthiophene-2,5-diyl) (P3HT) channel layer. This study provides insight on rectification behavior of OECTs, which allow expanding their functionality.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Organic electrochemical transistors
    Jonathan Rivnay
    Sahika Inal
    Alberto Salleo
    Róisín M. Owens
    Magnus Berggren
    George G. Malliaras
    Nature Reviews Materials, 3
  • [2] Organic electrochemical transistors
    Rivnay, Jonathan
    Inal, Sahika
    Salleo, Alberto
    Owens, Roisin M.
    Berggren, Magnus
    Malliaras, George G.
    NATURE REVIEWS MATERIALS, 2018, 3 (02):
  • [3] Steady-state and transient behavior of organic electrochemical transistors
    Bernards, Daniel A.
    Malliaras, George G.
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) : 3538 - 3544
  • [4] Correlation between Transient Response and Neuromorphic Behavior in Organic Electrochemical Transistors
    Yamamoto, Shunsuke
    Polyravas, Anastasios G.
    Han, Sanggil
    Malliaras, George G.
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (04)
  • [5] Processing of organic electrochemical transistors
    Barbosa, Henrique Frulani de Paula
    Asyuda, Andika
    Skowrons, Michael
    Schander, Andreas
    Luessem, Bjoern
    MRS COMMUNICATIONS, 2024, 14 (02) : 132 - 148
  • [6] Thermodynamics of organic electrochemical transistors
    Matteo Cucchi
    Anton Weissbach
    Lukas M. Bongartz
    Richard Kantelberg
    Hsin Tseng
    Hans Kleemann
    Karl Leo
    Nature Communications, 13
  • [7] Thermodynamics of organic electrochemical transistors
    Cucchi, Matteo
    Weissbach, Anton
    Bongartz, Lukas M.
    Kantelberg, Richard
    Tseng, Hsin
    Kleemann, Hans
    Leo, Karl
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] "Clickable" Organic Electrochemical Transistors
    Fenoy, Gonzalo E.
    Hasler, Roger
    Quartinello, Felice
    Marmisolle, Waldemar A.
    Lorenz, Christoph
    Azzaroni, Omar
    Bauerle, Peter
    Knoll, Wolfgang
    JACS AU, 2022, 2 (12): : 2778 - 2790
  • [9] On the Modeling of Organic Electrochemical Transistors
    Bongartz, Lukas M.
    Cucchi, Matteo
    Leo, Karl
    Kleemann, Hans
    ORGANIC AND HYBRID SENSORS AND BIOELECTRONICS XV, 2022, 12210
  • [10] Processing of organic electrochemical transistors
    Henrique Frulani de Paula Barbosa
    Andika Asyuda
    Michael Skowrons
    Andreas Schander
    Björn Lüssem
    MRS Communications, 2024, 14 : 132 - 148