Prediction of project activity delays caused by variation orders: a machine-learning approach

被引:0
|
作者
Nishat, Mirza Muntasir [1 ]
Neraas, Sander Magnussen [1 ]
Marsov, Andrei [1 ]
Olsson, Nils O. E. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
关键词
D O I
10.1088/1755-1315/1389/1/012038
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Project activity delays caused by variation orders (VOs) can compromise the achievement of timely project completion. Previous research on machine learning (ML) applications for delay predictions has mainly been concerned with delays on a whole project level, whereas predictions of delays in individual project activities have received less attention. This study is a pilot study to investigate how data from large project databases can be used for an ML analysis. The application is aimed at providing early warnings of delays related to VOs in construction projects. The study was performed following typical ML model development steps including data collection, data preprocessing, model training, and testing. A compound dataset was retrieved from project-planning software utilised in a large project. Four pilot tree-based ML models, namely, Decision Tree, Random Forest, AdaBoost, and Gradient Boosting, were trained and tested on a pre-processed dataset comprising 11194 activities. The overall best-performing model was Random Forest with 92.7% and 91.8% recall on DELAYED START and DELAYED FINISH, respectively. By emphasizing that project participants' competency and personal accountability might influence the timely implementation of scope adjustments, these findings advance the field of project management research. An approach like the use of tree-based ML algorithms is applicable for analyses of individual activities in other construction projects. Considering the capability of ML algorithms to capture complex interconnections in raw data extracted from project-planning software, further development of such ML models will enable the establishment of an AI-based Early Warning System (EWS) that can flag potential delays caused by VO requests.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Machine-Learning Approach for the Prediction of Enzymatic Activity of Proteins in Metagenomic Samples
    Koutsandreas, Theodoros
    Pilalis, Eleftherios
    Chatziioannou, Aristotelis
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 81 - 87
  • [2] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [3] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [4] LSO-080 Machine-learning approach on lupus low disease activity prediction
    Faelnar, Nick
    Tee, Michael
    Tee, Cherica
    Caro, Jaime
    Solano, Geoffrey
    Kandane-Rathnayake, Rangi
    Magbitang-Santiago, Angelene Therese
    Salido, Evelyn
    Golder, Vera
    Louthrenoo, Worawit
    Chen, Yi-Hsing
    Cho, Jiacai
    Lateef, Aisha
    Hamijoyo, Laniyati
    Luo, Shue-Fen
    Wu, Yeong-Jian J.
    Navarra, Sandra
    Zamora, Leonid
    Li, Zhanguo
    Sockalingam, Sargunan
    Katsumata, Yasuhiro
    Harigai, Masayoshi
    Hao, Yanjie
    Zhang, Zhuoli
    Basnayake, B. M. D. B.
    Chann, Madelynn
    Kikuchi, Jun
    Takeuchi, Tsutomu
    Bae, Sang-Cheol
    Oon, Shereen
    O'Neill, Sean
    Goldblatt, Fiona
    Ng, Kristine
    Law, Annie
    Tugnet, Nicola
    Kumar, Sunil
    Ohkubo, Naoaki
    Tanaka, Yoshiya
    Lau, Chak Sing
    Nikpour, Mandana
    Hoi, Alberta
    Morand, Eric
    LUPUS SCIENCE & MEDICINE, 2023, 10 (SUPPL_1): : A84 - A84
  • [5] A machine-learning approach for analyzing document layout structures with two reading orders
    Wu, Chung-Chih
    Chou, Chien-Hsing
    Chang, Fu
    PATTERN RECOGNITION, 2008, 41 (10) : 3200 - 3213
  • [6] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [7] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585
  • [8] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [9] A Machine-Learning Approach for the Prediction of Internal Corrosion in Pipeline Infrastructures
    Canonaco, Giuseppe
    Roveri, Manuel
    Alippi, Cesare
    Podenzani, Fabrizio
    Bennardo, Antonio
    Conti, Marco
    Mancini, Nicola
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [10] Machine-learning approach determines spatial variation in shale decline curves
    Bakay, Aleksandr
    Caers, Jef
    Mukerji, Tapan
    JPT, Journal of Petroleum Technology, 2020, 72 (10): : 65 - 66