The Time Domain Reflectometry (TDR) technique was used to analyse the complex permittivity spectra of the Pyridine-n-propyl alcohol mixture across the concentration and temperature range of 10-25 degrees C. The Cole-Davidson model was used to match the Pyridine- n-propyl alcohol complex permittivity spectra. The nonlinear least squares fit approach has been used to obtain the Static dielectric constant (epsilon 0), Relaxation time (tau), Effective Kirkwood correlation factor (geff) Excess permittivity$\left({\varepsilon _0<^>E} \right)$epsilon 0E, Thermodynamic parameters (activation enthalpy and activation entropy), and Bruggeman factor (fB). Furthermore, the analysis of excess characteristics and the Bruggeman factor points towards the presence of hydrogen bonding between the pyridine and n-propyl alcohol molecules.