Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images

被引:0
|
作者
Li, Ming [1 ,2 ]
Wang, Si [1 ]
机构
[1] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Peoples R China
[2] Key Lab Artificial Intelligence & Personalized Lea, Xinxiang 453007, Henan, Peoples R China
关键词
Privacy protection; Image authentication; Adversarial examples; Channel attention; Generative adversarial networks; DEEP NEURAL-NETWORKS; ROBUSTNESS;
D O I
10.1016/j.sigpro.2024.109816
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of network technology, more and more images containing personal identity characteristics are being released by users on open network platforms. However, these images are easily collected by malicious users, leading to problems such as privacy leakage, infringement, and tampering, thus harming users' legitimate interests. Recent studies have found that adversarial examples generated by adding tiny perturbations to an image can mislead image classifiers, causing incorrect classifications. Therefore significant privacy protection against deep neural networks is achieved while the visual quality remains indistinguishable to human eyes. However, these methods cannot protect the authenticity and integrity of the image simultaneously, failing to address infringement and tampering issues, which are also neglectable in the open network platforms. To solve this problem, we propose a novel authentication-enabled privacy protection method. The meaningful information used for authentication, instead of the meaningless perturbations, is embedded into the host image to generate adversarial examples, thereby achieving both authentication and privacy protection simultaneously. This scheme combines attention mechanisms with generative adversarial networks to adaptively select and weight features between different channels, achieving significant improvements in both aggressiveness and authentication capability. Experimental results show that our method outperforms recent similar methods in overall performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Rethinking Adversarial Examples for Location Privacy Protection
    Trung-Nghia Le
    Gu, Ta
    Nguyen, Huy H.
    Echizen, Isao
    2022 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2022,
  • [2] Dual Protection for Image Privacy and Copyright via Traceable Adversarial Examples
    Li, Ming
    Yang, Zhaoli
    Wang, Tao
    Zhang, Yushu
    Wen, Wenying
    IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (12) : 13401 - 13412
  • [3] Differential Privacy Images Protection Based on Generative Adversarial Network
    Yang, Ren
    Ma, Xuebin
    Bai, Xiangyu
    Su, Xiangdong
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1688 - 1695
  • [4] Collaborative Face Privacy Protection Method Based on Adversarial Examples in Social Networks
    Pan, Zhenxiong
    Sun, Junmei
    Li, Xiumei
    Zhang, Xin
    Bai, Huang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 499 - 510
  • [5] Certified Robustness to Adversarial Examples with Differential Privacy
    Lecuyer, Mathias
    Atlidakis, Vaggelis
    Geambasu, Roxana
    Hsu, Daniel
    Jana, Suman
    2019 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2019), 2019, : 656 - +
  • [6] Towards A Guided Perturbation for Privacy Protection through Detecting Adversarial Examples with Provable Accuracy and Precision
    Lin, Ying
    Qu, Yanzhen
    Zhang, Zhiyuan
    Su, Haorong
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 107 - 112
  • [7] Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
    Wu, Bingzhe
    Zhao, Shiwan
    Chen, ChaoChao
    Xu, Haoyang
    Wang, Li
    Zhang, Xiaolu
    Sun, Guangyu
    Zhou, Jun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] Privacy protection generalization with adversarial fusion
    Wang, Hao
    Sun, Guangmin
    Zheng, Kun
    Li, Hui
    Liu, Jie
    Bai, Yu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) : 7314 - 7336
  • [9] Self-Recoverable Adversarial Examples: A New Effective Protection Mechanism in Social Networks
    Zhang, Jiawei
    Wang, Jinwei
    Wang, Hao
    Luo, Xiangyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 562 - 574
  • [10] Advanced Trajectory Privacy Protection with Attention Mechanism and Auxiliary Classifier Generative Adversarial Networks
    Shin, Jihwan
    Song, Yeji
    Cheong, Yoo-Young
    Ahn, Jinhyun
    Lee, Taewhi
    Im, Dong-Hyuk
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 257 - 261