SIHENet: Semantic Interaction and Hierarchical Embedding Network for 360° Salient Object Detection

被引:0
|
作者
He, Zhentao [1 ]
Shao, Feng [1 ]
Xie, Zhengxuan [1 ]
Chai, Xiongli [1 ]
Ho, Yo-Sung [2 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Gwangju Inst Sci & Technol GIST, Sch Informat & Commun, Gwangju 500712, South Korea
关键词
Feature extraction; Semantics; Image edge detection; Distortion; Object detection; Optical distortion; Image segmentation; Data mining; Deformation; Shape; 360 degrees omnidirectional images; cross-level feature; cross-projection feature; salient object detection (SOD); OMNIDIRECTIONAL IMAGE; NEURAL-NETWORK; MODEL;
D O I
10.1109/TIM.2024.3507047
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the application of panoramic imaging instruments in environmental perception and measurement, 360 degrees salient object detection (SOD) has become a concern. However, how to reduce the serious distortion of 360 degrees images is still an open question. In this article, we fully exploit the intrinsic information complementarity of cross-projection and cross-level features and innovatively propose a semantic interaction and hierarchical embedding network (SIHENet) to realize 360 degrees SOD. In terms of fusion of different projection features, considering that the distortion of cubemap projection (CMP) images is relatively small, we propose a multiscale hierarchical embedding (MSHE) module to establish the context of CMP images and embed equirectangular projection (ERP) images in it to reduce distortion. In terms of cross-level feature fusion, in order to solve the feature dilution problem in feature transfer, we propose a multiprojection semantic interaction (MPSI) module to integrate the high-level information of ERP and CMP images. In order to solve the edge ambiguity problem, we propose a multilevel semantic matching (MLSM) module to enhance the edge information at different levels of ERP image. Extensive experiments on three public 360 degrees datasets demonstrate the competitive performance of the proposed model in comparison to state-of-the-art (SOTA) 360 degrees SOD models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hierarchical interaction and pooling network for co-salient object detection
    Wang, Yu
    Li, Shuxiao
    IMAGE AND VISION COMPUTING, 2023, 132
  • [2] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [3] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542
  • [4] Consistency perception network for 360° omnidirectional salient object detection
    Wen, Hongfa
    Zhu, Zunjie
    Zhou, Xiaofei
    Zhang, Jiyong
    Yan, Chenggang
    NEUROCOMPUTING, 2025, 620
  • [5] Hierarchical Feature Fusion Network for Salient Object Detection
    Li, Xuelong
    Song, Dawei
    Dong, Yongsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 9165 - 9175
  • [6] Hierarchical Salient Object Detection Network with Dense Connections
    Zhang, Qing
    Shi, Jianchen
    Zuo, Baochuan
    Dai, Meng
    Dong, Tianzhen
    Qi, Xiao
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 454 - 466
  • [7] Embedding Attention and Residual Network for Accurate Salient Object Detection
    Chen, Shuhan
    Wang, Ben
    Tan, Xiuli
    Hu, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2050 - 2062
  • [8] FANet: Features Adaptation Network for 360° Omnidirectional Salient Object Detection
    Huang, Mengke
    Liu, Zhi
    Li, Gongyang
    Zhou, Xiaofei
    Le Meur, Olivier
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 1819 - 1823
  • [9] Semantic and detail collaborative learning network for salient object detection
    Liang, Yanhua
    Qin, Guihe
    Sun, Minghui
    Qin, Jun
    Yan, Jie
    Zhang, Zhonghan
    NEUROCOMPUTING, 2021, 462 : 478 - 490
  • [10] Semantic Guided Feature Aggregation Network for Salient Object Detection
    Wang Z.-W.
    Song H.-H.
    Fan J.-Q.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (11): : 2386 - 2395