On Fourier Series in the Context of Jacobi Matrices

被引:0
|
作者
Matos, Jose M. A. [1 ]
Vasconcelos, Paulo B. [2 ]
Matos, Jose A. O. [2 ]
机构
[1] Univ Porto, Inst Super Engn, Inst Politecn Porto, Ctr Matemat, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[2] Univ Porto, Fac Econ, Ctr Matemat, Rua Dr Roberto Frias S-N, P-4200464 Porto, Portugal
关键词
orthogonal polynomials; fourier series; Jacobi matrix; functions of matrices; spectral methods; CONNECTION COEFFICIENTS; LINEARIZATION FORMULAS; POLYNOMIALS;
D O I
10.3390/axioms13090581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of matrices that emerge from the application of Fourier series to Jacobi matrices. Specifically, we focus on functions defined by the coefficients of a Fourier series expressed in orthogonal polynomials. In the operational formulation of integro-differential problems, these infinite matrices play a fundamental role. We have derived precise calculation formulas for their elements, enabling exact computation of these operational matrices. Numerical results illustrate the effectiveness of our approach.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On the mean convergence of Fourier–Jacobi series
    V. P. Motornyi
    S. V. Goncharov
    P. K. Nitiema
    Ukrainian Mathematical Journal, 2010, 62 : 943 - 960
  • [2] SUMMABILITY OF JACOBI SERIES BY TRIANGULAR MATRICES
    KALNEI, SG
    MATHEMATICAL NOTES, 1983, 34 (1-2) : 530 - 536
  • [3] ON THE SUMMABILITY OF RANDOM FOURIER–JACOBI SERIES
    Sahoo, Sabita
    Maharana, Partiswari
    arXiv, 2023,
  • [4] Fourier coefficients of Jacobi Poincaré series and applications
    Jha, Abhash Kumar
    Sarkar, Animesh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [5] THE CONVERGENCE OF DISCRETE FOURIER-JACOBI SERIES
    Arenas, Alberto
    Ciaurri, Oscar
    Labarga, Edgar
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (06) : 2539 - 2550
  • [6] UNIFORM CONVERGENCE OF FOURIER-JACOBI SERIES
    PRASAD, J
    HAYASHI, H
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (01) : 23 - 27
  • [7] ON THE MEAN CONVERGENCE OF FOURIER-JACOBI SERIES
    Motornyi, V. P.
    Goncharov, S. V.
    Nitiema, P. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (06) : 943 - 960
  • [8] POINTWISE CONVERGENCE OF FOURIER-JACOBI SERIES
    Zhongkai Li (Capital Normal University
    Approximation Theory and Its Applications, 1995, (04) : 58 - 77
  • [9] Uniform convergence of Fourier-Jacobi series
    Kvernadze, G
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (02) : 207 - 228
  • [10] Eigenproblem for Jacobi matrices: hypergeometric series solution
    Kuznetsov, V. B.
    Sklyanin, E. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 1089 - 1114