Moment condition models with mixed identification strength are models that are point identified but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter space. Even though identification fails in the limit, depending on how slow the moment functions vanish, consistent estimation is possible. Existing estimators such as the generalized method of moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of convergence that materializes by some parameter directions being estimated at a slower rate than others. This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parameters of these models. We show that GMM estimators are regular and that the so-called two-step GMM estimator - using the inverse of estimating function's variance as weighting matrix - is semiparametrically efficient as it reaches the minimum variance attainable by regular estimators. This estimator is also asymptotically minimax efficient with respect to a large family of loss functions. Monte Carlo simulations are provided that confirm these results.
机构:
Univ Calif Los Angeles, Dept Econ, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Econ, Los Angeles, CA 90095 USA
Hahn, Jinyong
Newey, Whitney K.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Econ, Cambridge, MA 02142 USAUniv Calif Los Angeles, Dept Econ, Los Angeles, CA 90095 USA
Newey, Whitney K.
Smith, Richard J.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Microdata Methods & Practice, Inst Fiscal Studies, London WC1E 7AE, England
Univ Cambridge, Fac Econ, Cambridge CB3 9DD, England
Univ Canterbury, Econ & Finance Dept, Christchurch 8140, New ZealandUniv Calif Los Angeles, Dept Econ, Los Angeles, CA 90095 USA
机构:
Ecole Normale Super, Phys Stat Lab, Dept Phys, F-75231 Paris 05, FranceEcole Normale Super, Phys Stat Lab, Dept Phys, F-75231 Paris 05, France
Derrida, Bernard
Giacomin, Giambattista
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, F-75251 Paris, France
Univ Paris 07, UFR Math, CNRS, Lab Probabilites & Modeles Aleatoires,UMR 7599, F-75251 Paris 05, FranceEcole Normale Super, Phys Stat Lab, Dept Phys, F-75231 Paris 05, France
Giacomin, Giambattista
Lacoin, Hubert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, F-75251 Paris, France
Univ Paris 07, UFR Math, CNRS, Lab Probabilites & Modeles Aleatoires,UMR 7599, F-75251 Paris 05, FranceEcole Normale Super, Phys Stat Lab, Dept Phys, F-75231 Paris 05, France
Lacoin, Hubert
Toninelli, Fabio Lucio
论文数: 0引用数: 0
h-index: 0
机构:
ENS, CNRS, Phys Lab, UMR 5672, F-69364 Lyon 07, FranceEcole Normale Super, Phys Stat Lab, Dept Phys, F-75231 Paris 05, France