Study on the prediction method of oil-water two-phase flow pattern and oil holdup

被引:0
|
作者
He, Haikang [1 ]
Zhou, Ziqiang [2 ]
Sun, Baojiang [2 ]
Li, Xuefeng [2 ]
Sun, Xiaohui [2 ]
机构
[1] PetroChina Southwest Oil & Gas Field Co, Engn Technol Res Inst, Chengdu 610017, Sichuan, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Deep learning; Two-phase flow; Flow pattern; Oil holdup; Feature selection; OIL/WATER-FLOW; PRESSURE-DROP; MODEL;
D O I
10.1016/j.geoen.2024.213627
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Oil-water flow often occurs during pipeline gathering and oil field production. Complex flow patterns and oil holdup changes cause technical difficulties in pipeline maintenance. Accurate and rapid prediction of the flow patterns distribution and oil holdup is significant. A basic database of oil and water flow patterns and oil holdup was constructed by collecting experimental data. The pipeline inclination angle ranged from 0 to 90 degrees, the apparent velocity of the oil phase ranged from 0.01 to 4.71 m/s, and the apparent velocity of the water phase ranged from 0.01 to 7.58 m/s. The characteristic parameters of the oil-water flow pattern and oil hold-up were selected, and an estimated model of liquid hold-up and oil-water flow pattern distribution was constructed by applying the deep learning method. The results show that the prediction accuracy of the established deep learning model for the oil-water flow pattern and oil holdup in the training set exceeded 95%. Predicting flow transition boundaries in both the horizontal and vertical directions is superior to traditional flow boundary maps that are based on experimental partitioning. The new method has a prediction accuracy of over 85% for oil holdup. Applying this model to the calculation of pressure drop in oil-water two-phase flow, the accuracy of pressure drop calculation reaches 95%, which can be extended to the application of oil-water pipeline transportation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Flow Pattern and Oil Holdup Prediction in Vertical Oil-Water Two-Phase Flow Using Pressure Fluctuation Signal
    Azizi, Sadra
    Karimi, Hajir
    Darvishi, Parviz
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2017, 36 (02): : 125 - 141
  • [2] A New Method for Measuring Water Holdup of Oil-Water Two-Phase Flow in Horizontal Wells
    Wang, Yanjun
    Han, Jianlong
    Hao, Zhiqiang
    Zhou, Lijian
    Wang, Xinjie
    Shao, Mingwei
    PROCESSES, 2022, 10 (05)
  • [3] Water holdup measurement of oil-water two-phase flow based on CPW
    Wei, Yong (7034669@qq.com), 1600, Science Press (38):
  • [4] A novel method to identify the flow pattern of oil-water two-phase flow
    Li, Zhong-Cheng
    Fan, Chun-Ling
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2020, 10 (08) : 3723 - 3732
  • [5] Flow pattern and water holdup measurements of vertical upward oil-water two-phase flow in small diameter pipes
    Du, Meng
    Jin, Ning-De
    Gao, Zhong-Ke
    Wang, Zhen-Ya
    Zhai, Lu-Sheng
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2012, 41 : 91 - 105
  • [6] Water Holdup Measurement of Oil-Water Two-phase Flow Based on KPLS Regression
    Wang, Nana
    Tan, Chao
    Dong, Feng
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 1896 - 1900
  • [7] Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network
    Azizi, Sadra
    Awad, Mohamed M.
    Ahmadloo, Ebrahim
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2016, 80 : 181 - 187
  • [8] Measurement of the oil holdup for a two-phase oil-water flow through a sudden contraction in a horizontal pipe
    Colombo, L. P. M.
    Guilizzoni, M.
    Sotgia, G. M.
    Bortolotti, S.
    Pavan, L.
    31ST UIT (ITALIAN UNION OF THERMO-FLUID-DYNAMICS) HEAT TRANSFER CONFERENCE 2013, 2014, 501
  • [9] Effects of flow patterns and salinity on water holdup measurement of oil-water two-phase flow using a conductance method
    Liu, W. X.
    Jin, N. D.
    Han, Y. F.
    Zhai, L. S.
    Chen, X.
    Zhang, H. X.
    MEASUREMENT, 2016, 93 : 503 - 514
  • [10] Adaptive Kalman Estimation of Phase Holdup of Water-Continuous Oil-Water Two-Phase Flow
    Fu, Guangzhi
    Tan, Chao
    Wu, Hao
    Dong, Feng
    IEEE ACCESS, 2017, 5 : 3569 - 3579