RATE-OPTIMAL ESTIMATION OF MIXED SEMIMARTINGALES

被引:0
|
作者
Chong, Carsten H. [1 ]
Delerue, Thomas [2 ]
Mies, Fabian [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Informat Syst Business Stat & Operat Manageme, Hong Kong, Peoples R China
[2] Helmholtz Munich, Inst Epidemiol, Munich, Germany
[3] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
来源
ANNALS OF STATISTICS | 2025年 / 53卷 / 01期
关键词
Central limit theorem; high-frequency observations; Hurst parameter; KL divergence; minimax rate; mixed fractional Brownian motion; rough noise; FRACTIONAL GAUSSIAN-NOISE; ASYMPTOTIC THEORY; INTEGRATED VOLATILITY; MICROSTRUCTURE NOISE; PARAMETER; MOTION; MEMORY;
D O I
10.1214/24-AOS2461
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the sum Y = B + B(H) of a Brownian motion B and an independent fractional Brownian motion B(H) with Hurst parameter H is an element of (0, 1). Even though B(H) is not a semimartingale, it was shown by Cheridito (Bernoulli 7 (2001) 913-934) that Y is a semimartingale if H > 3/4. Moreover, Y is locally equivalent to B in this case, so H cannot be consistently estimated from local observations of Y. This paper pivots on another unexpected feature in this model: if B and B(H) become correlated, then Y will never be a semimartingale, and H can be identified, regardless of its value. This and other results will follow from a detailed statistical analysis of a more general class of processes called mixed semimartingales, which are semiparametric extensions of Y with stochastic volatility in both the martingale and the fractional component. In particular, we derive consistent estimators and feasible central limit theorems for all parameters and processes that can be identified from high-frequency observations. We further show that our estimators achieve optimal rates in a minimax sense.
引用
收藏
页码:219 / 244
页数:26
相关论文
共 50 条
  • [1] RATE-OPTIMAL GRAPHON ESTIMATION
    Gao, Chao
    Lu, Yu
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (06): : 2624 - 2652
  • [2] Rate-Optimal Subspace Estimation on Random Graphs
    Zhou, Zhixin
    Zhou, Fan
    Li, Ping
    Zhang, Cun-Hui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [3] OPTIMAL ESTIMATION FOR SEMIMARTINGALES
    THAVANESWARAN, A
    THOMPSON, ME
    JOURNAL OF APPLIED PROBABILITY, 1986, 23 (02) : 409 - 417
  • [4] Rate-optimal nonparametric estimation for random coefficient regression models
    Holzmann, Hajo
    Meister, Alexander
    BERNOULLI, 2020, 26 (04) : 2790 - 2814
  • [5] Minimax Rate-optimal Estimation of KL Divergence between Discrete Distributions
    Han, Yanjun
    Jiao, Jiantao
    Weissman, Tsachy
    PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 256 - 260
  • [6] Minimax estimation of norms of a probability density: II. Rate-optimal estimation procedures
    Goldenshluger, Alexander
    Lepski, Oleg, V
    BERNOULLI, 2022, 28 (02) : 1155 - 1178
  • [7] Consistent and rate-optimal density estimation from heteroscedastic data groups
    Meister, Alexander
    Stadtmueller, Ulrich
    Wagner, Christian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (06) : 1893 - 1904
  • [8] RATE-OPTIMAL ROBUST ESTIMATION OF HIGH-DIMENSIONAL VECTOR AUTOREGRESSIVE MODELS
    Wang, Di
    Tsay, Ruey S.
    ANNALS OF STATISTICS, 2023, 51 (02): : 846 - 877
  • [9] Rate-optimal nonparametric estimation in classical and Berkson errors-in-variables problems
    Delaigle, Aurore
    Meister, Alexander
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 102 - 114
  • [10] A Simpler Rate-Optimal CPIR Protocol
    Lipmaa, Helger
    Pavlyk, Kateryna
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, FC 2017, 2017, 10322 : 621 - 638