Estimating Conditional Distributions with Neural Networks Using R Package deeptrafo

被引:0
|
作者
Kook, Lucas [1 ]
Baumann, Philipp F. M. [2 ]
Durr, Oliver [3 ]
Sick, Beate [4 ,5 ]
Ruegamer, David [6 ,7 ]
机构
[1] Vienna Univ Econ & Business, Vienna, Austria
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] HTWG Konstanz, Constance, Germany
[4] Univ Zurich, Zurich, Switzerland
[5] Zurich Univ Appl Sci, Zurich, Switzerland
[6] Ludwig Maximilians Univ Munchen, Munich, Germany
[7] Munich Ctr Machine Learning, Munich, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 111卷 / 10期
基金
瑞士国家科学基金会;
关键词
deep learning; distributional regression; neural networks; transformation models;
D O I
10.18637/jss.v111.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Contemporary empirical applications frequently require flexible regression models for complex response types and large tabular or non-tabular, including image or text, data. Classical regression models either break down under the computational load of processing such data or require additional manual feature extraction to make these problems tractable. Here, we present deeptrafo, a package for fitting flexible regression models for conditional distributions using a tensorflow back end with numerous additional processors, such as neural networks, penalties, and smoothing splines. Package deeptrafo implements deep conditional transformation models (DCTMs) for binary, ordinal, count, survival, continuous, and time series responses, potentially with uninformative censoring. Unlike other available methods, DCTMs do not assume a parametric family of distributions for the response. Further, the data analyst may trade off interpretability and flexibility by supplying custom neural network architectures and smoothers for each term in an intuitive formula interface. We demonstrate how to set up, fit, and work with DCTMs for several response types. We further showcase how to construct ensembles of these models, evaluate models using inbuilt cross-validation, and use other convenience functions for DCTMs in several applications. Lastly, we discuss DCTMs in light of other approaches to regression with non-tabular data.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [1] Estimating conditional distributions by neural networks
    Kulczycki, P
    Schioler, H
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1344 - 1349
  • [2] Neural network for estimating conditional distributions
    Schioler, H
    Kulczycki, P
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05): : 1015 - 1025
  • [3] Estimating multivariate conditional distributions via neural networks and global optimization
    Stützle, EA
    Hrycej, T
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1767 - 1772
  • [4] Refreg: An R Package for Estimating Conditional Reference
    Lado-Baleato, Oscar
    Roca-Pardinas, Javier
    Cadarso-Suarez, Carmen
    Gude, Francisco
    R JOURNAL, 2022, 14 (02): : 135 - 151
  • [5] 'cito': an R package for training neural networks using 'torch'
    Amesoeder, Christian
    Hartig, Florian
    Pichler, Maximilian
    ECOGRAPHY, 2024, 2024 (06)
  • [6] BLNN: An R package for training neural networks using Bayesian inference
    Sharaf, Taysseer
    Williams, Theren
    Chehade, Abdallah
    Pokhrel, Keshav
    SOFTWAREX, 2020, 11 (11)
  • [7] Estimating the conditional mean of a non-linear time series using neural networks
    Giordano, F
    Perna, C
    NEURAL NETS - WIRN VIETRI-99, 1999, : 423 - 428
  • [8] SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks
    Mananes, Diego
    Rivero-Garcia, Ines
    Relano, Carlos
    Torres, Miguel
    Sancho, David
    Jimenez-Carretero, Daniel
    Torroja, Carlos
    Sanchez-Cabo, Fatima
    BIOINFORMATICS, 2024, 40 (02)
  • [9] FluxSimulator: An R package to simulate isotopomer distributions in metabolic networks
    Binsl, Thomas W.
    Mullen, Katharine M.
    van Stokkum, Ivo H. M.
    Heringa, Jaap
    van Beek, Johannes H. G. M.
    JOURNAL OF STATISTICAL SOFTWARE, 2007, 18 (07):
  • [10] Estimating radar clutter distributions via neural networks
    Bucciarelli, T
    Monopoli, F
    Parisi, R
    Lombardo, P
    ICR '96 - 1996 CIE INTERNATIONAL CONFERENCE OF RADAR, PROCEEDINGS, 1996, : 135 - 138