Hydrogen is widely regarded as a key option for the replacement of fossil fuels in the near future. Despite compression being the most well-known and widespread technology for hydrogen storage and transportation, liquid hydrogen (LH2) is preferable for large-scale applications where a greater energy density is crucial to reach the desired storage capacities. For instance, in 2020-2021, the HySTRA (Hydrogen Energy Supply- chain Technology Research Association) pilot project was carried out to demonstrate the feasibility of a large-scale liquefied hydrogen energy supply chain from the production site in Australia to the receiving terminal in Japan. The unloading facility, which includes a 2,500 m(3) LH2 spherical storage tank, a boil-off tank, and other equipment for the transfer of LH2 from land-based facilities to the LH2 truck trailers, is located in the Port of Kobe, in the northeast section of Kobe Airport Island. This facility is the world's first liquefied hydrogen receiving terminal for unloading of a LH2 marine carrier. Given the hazards related to hydrogen storage and handling that derive from its high flammability, safety plays a fundamental role in hydrogen applications, particularly when managing large amounts of fuel. In the present study, a risk analysis is performed to estimate the risk related to a liquid hydrogen bunkering facility. First, the most safety-critical components are identified through a preliminary risk analysis. Second, more detailed modelling is carried out to quantify the consequences of an unexpected loss of containment (LOC) from the most critical piece of equipment. The consequences are expressed in terms of separation distances and calculated by integral models from the effects of possible final events (e.g., fires and explosions).