Dynamic real-time detection for corn kernel breakage rate based on deep learning and sliding window technology

被引:0
|
作者
Wang, Qihuan [1 ]
He, Qinghao [1 ]
Yue, Dong [1 ]
Li, Duanxin [1 ]
Yin, Jianning [1 ]
Guan, Pengxuan [1 ]
Sun, Yancheng [3 ]
Geng, Duanyang [1 ]
Wang, Zhenwei [2 ]
机构
[1] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo 255000, Peoples R China
[2] Minist Agr & Rural Affairs, Nanjing Res Inst Agr Mechanizat, Nanjing 210014, Peoples R China
[3] Zaozhuang City Shanting Dist Agr & Rural Bur, Zaozhuang 277299, Peoples R China
关键词
Corn kernel breakage rate detection; Dynamic detection; Deep learning; YOLOv7; Sliding window; SYSTEM; VISION; CLASSIFICATION;
D O I
10.1016/j.compag.2025.109926
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Currently, the field of intelligent corn harvesting in China lacks effective methods for detecting corn kernel breakage. This paper explores and proposes a corn kernel detection technology that utilizes deep learning and sliding window technology, combined with a specially developed quantitative model, to enable real-time detection of the corn kernel breakage rate. In this study, we quantified the corn kernel mass at various levels of crushing and proposed a quantitative model for the corn kernel breakage rate, which is suitable for real-time computation by a computer vision system. We developed a specialized corn kernel detection device to generate high-quality datasets and retrain our previously proposed corn kernel breakage detection model (BCK-YOLOv7). Subsequently, ablation experiments were conducted to assess the generalization capability of the BCK-YOLOv7 model in corn kernel detection. Furthermore, we analyzed the limitations of single-frame detection through dynamic comparison experiments. To address the instability of single-frame detection results in the corn kernels flow state, we introduced the sliding window technique, which, along with pipeline technology, significantly enhances detection efficiency. Finally, the comprehensive performance of the proposed corn kernel breakage detection technology was validated through systematic testing. The results indicate that the relative error in the detection of the breakage rate remains around 7%, and the detection rate of the technology, when deployed on edge devices, can achieve 22 frames per second (FPS), thereby meeting the requirements for real-time detection of corn kernel breakage rate.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Real-Time Detection Technology of Corn Kernel Breakage and Mildew Based on Improved YOLOv5s
    Liu, Mingming
    Liu, Yinzeng
    Wang, Qihuan
    He, Qinghao
    Geng, Duanyang
    AGRICULTURE-BASEL, 2024, 14 (05):
  • [2] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [3] Real-Time Lane Detection Based on Deep Learning
    Baek, Sun-Woo
    Kim, Myeong-Jun
    Suddamalla, Upendra
    Wong, Anthony
    Lee, Bang-Hyon
    Kim, Jung-Ha
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 655 - 664
  • [4] Dynamic and Real-Time Object Detection Based on Deep Learning for Home Service Robots
    Ye, Yangqing
    Ma, Xiaolon
    Zhou, Xuanyi
    Bao, Guanjun
    Wan, Weiwei
    Cai, Shibo
    SENSORS, 2023, 23 (23)
  • [5] Real-Time Dynamic SLAM Algorithm Based on Deep Learning
    Su, Peng
    Luo, Suyun
    Huang, Xiaoci
    IEEE ACCESS, 2022, 10 : 87754 - 87766
  • [6] Real-time detection of distracted driving based on deep learning
    Duy Tran
    Ha Manh Do
    Sheng, Weihua
    Bai, He
    Chowdhary, Girish
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (10) : 1210 - 1219
  • [7] Deep learning based anomaly detection in real-time video
    Elmetwally A.
    Eldeeb R.
    Elmougy S.
    Multimedia Tools and Applications, 2025, 84 (11) : 9555 - 9571
  • [8] Real-Time, Deep Learning Based Wrong Direction Detection
    Usmankhujaev, Saidasul
    Baydadaev, Shokhrukh
    Woo, Kwon Jang
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [9] Real-time UAV Detection based on Deep Learning Network
    Hassan, Syed Ali
    Rahim, Tariq
    Shin, Soo Young
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 630 - 632
  • [10] Real-Time Epileptic Seizure Detection Based on Deep Learning
    Zhou, Tianshu
    Feng, Yulang
    Wang, Jianda
    Tian, Yu
    Feng, Jianhua
    Li, Jingsong
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,