Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life

被引:1
|
作者
Torruella, Guifre [1 ,2 ]
Javier Galindo, Luis [1 ,3 ,4 ]
Moreira, David [1 ]
Lopez-Garcia, Purificacio [1 ]
机构
[1] Univ Paris Saclay, Ecol Systemat Evolut, CNRS, AgroParisTech, F-91190 Gif Sur Yvette, France
[2] UPF CSIC, Inst Biol Evolut, Barcelona 08003, Catalonia, Spain
[3] Univ Granada, Inst Water Res, Granada 18071, Spain
[4] Univ Granada, Dept Ecol, Campus Fuentenueva, Granada 18071, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SP-NOV; EVOLUTION; DIVERSITY; LINEAGE; BACTERIAL; PROTOZOA; ECOLOGY; ULTRASTRUCTURE; MITOCHONDRIAL; OPISTHOKONTS;
D O I
10.1016/j.cub.2024.10.075
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotes evolved from prokaryotic predecessors in the early Proterozoic1,2 and radiated from their already complex last common ancestor,3 diversifying into several supergroups with unresolved deep evolutionary connections.4 They evolved extremely diverse lifestyles, playing crucial roles in the carbon cycle.5,6 Heterotrophic flagellates are arguably the most diverse eukaryotes4,7-9 and often occupy basal positions in phylogenetic trees. However, many of them remain undersampled4,10 and/or incertae sedis . 4,11-18 Progressive improvement of phylogenomic methods and a wider protist sampling have reshaped and consolidated major clades in the eukaryotic tree.13-19 This is illustrated by the Opimoda,14 one of the largest eukaryotic supergroups (Amoebozoa, Ancyromonadida, Apusomonadida, Breviatea, CRuMs [ Collodictyon-Rigifila- Mantamonas], Malawimonadida, and Opisthokonta-including animals and fungi). 4,14,19-22 However, their deepest evolutionary relationships still remain uncertain. Here, we sequenced transcriptomes of poorly studied flagellates23,24 (14 apusomonads,25,26 7 ancyromonads,27 and 1 cultured Mediterranean strain of Meteora sporadica17) and conducted comprehensive phylogenomics analyses with an expanded taxon sampling of early-branching protists. Our findings support the monophyly of Opimoda, with CRuMs being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts) and ancyromonads and malawimonads forming a moderately supported clade. By mapping key complex phenotypic traits onto this phylogenetic framework, we infer an opimodan biflagellate ancestor with an excavate-like feeding groove, which ancyromonads subsequently lost. Although breviates and apusomonads retained the ancestral biflagellate state, some early-diverging Amorphea lost one or both flagella, facilitating the evolution of amoeboid morphologies, novel feeding modes, and palintomic cell division resulting in multinucleated cells. These innovations likely facilitated the subsequent evolution of fungal and metazoan multicellularity.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Phylogenomics and the reconstruction of the tree of life
    Delsuc, F
    Brinkmann, H
    Philippe, H
    NATURE REVIEWS GENETICS, 2005, 6 (05) : 361 - 375
  • [2] Phylogenomics and the reconstruction of the tree of life
    Frédéric Delsuc
    Henner Brinkmann
    Hervé Philippe
    Nature Reviews Genetics, 2005, 6 : 361 - 375
  • [3] Phylogenomics and the flowering plant tree of life
    Guo, Cen
    Luo, Yang
    Gao, Lian-Ming
    Yi, Ting-Shuang
    Li, Hong-Tao
    Yang, Jun-Bo
    Li, De-Zhu
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2023, 65 (02) : 299 - 323
  • [4] Phylogenomics and the flowering plant tree of life
    Cen Guo
    Yang Luo
    Lian-Ming Gao
    Ting-Shuang Yi
    Hong-Tao Li
    Jun-Bo Yang
    De-Zhu Li
    JournalofIntegrativePlantBiology, 2023, 65 (02) : 299 - 323
  • [5] The Compositae Tree of Life in the age of phylogenomics
    Mandel, Jennifer R.
    Barker, Michael S.
    Bayer, Randall J.
    Dikow, Rebecca B.
    Gao, Tian-Gang
    Jones, Katy E.
    Keeley, Sterling
    Kilian, Norbert
    Ma, Hong
    Siniscalchi, Carolina M.
    Susanna, Alfonso
    Thapa, Ramhari
    Watson, Linda
    Funk, Vicki A.
    JOURNAL OF SYSTEMATICS AND EVOLUTION, 2017, 55 (04) : 405 - 410
  • [6] Phylogenomics reveal a robust fungal tree of life
    Kuramae, Eiko E.
    Robert, Vincent
    Snel, Berend
    Weiss, Michael
    Boekhout, Teun
    FEMS YEAST RESEARCH, 2006, 6 (08) : 1213 - 1220
  • [7] Spider phylogenomics: untangling the Spider Tree of Life
    Garrison, Nicole L.
    Rodriguez, Juanita
    Agnarsson, Ingi
    Coddington, Jonathan A.
    Griswold, Charles E.
    Hamilton, Christopher A.
    Hedin, Marshal
    Kocot, Kevin M.
    Ledford, Joel M.
    Bond, Jason E.
    PEERJ, 2016, 4
  • [8] PHYLOGENOMICS Building the insect tree-of-life
    Jones, Bryony
    NATURE REVIEWS GENETICS, 2015, 16 (01) : 1 - 1
  • [9] Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life
    Hime, Paul M.
    Lemmon, Alan R.
    Lemmon, Emily C. Moriarty
    Prendini, Elizabeth
    Brown, Jeremy M.
    Thomson, Robert C.
    Kratovil, Justin D.
    Noonan, Brice P.
    Pyron, R. Alexander
    Peloso, Pedro L., V
    Kortyna, Michelle L.
    Keogh, J. Scott
    Donnellan, Stephen C.
    Mueller, Rachel Lockridge
    Raxworthy, Christopher J.
    Kunte, Krushnamegh
    Ron, Santiago R.
    Das, Sandeep
    Gaitonde, Nikhil
    Green, David M.
    Labisko, Jim
    Che, Jing
    Weisrock, David W.
    SYSTEMATIC BIOLOGY, 2021, 70 (01) : 49 - 66
  • [10] Anchored phylogenomics illuminates the skipper butterfly tree of life
    Toussaint, Emmanuel F. A.
    Breinholt, Esse W.
    Earl, Chandra
    Warren, Andrew D.
    Brower, Andrew V. Z.
    Yago, Masaya
    Dexter, Kelly M.
    Espeland, Marianne
    Pierce, Naomi E.
    Lohman, David J.
    Kawahara, Akito Y.
    BMC EVOLUTIONARY BIOLOGY, 2018, 18