Poly(trimethylene terephthalate-b-poly(trimethylene ether) glycol) copolymers: From bio-based thermoplastic elastomers to elastic fibers for apparel

被引:1
|
作者
Li, Yingying [1 ,2 ]
Liu, Yali [1 ,2 ]
Liu, Ai [1 ,2 ]
Xu, Changjie [1 ,2 ]
Zhang, Chijian [4 ,5 ]
Yu, Jianyong [3 ]
Yuan, Ruchao [1 ,2 ]
Li, Faxue [1 ,2 ,3 ]
机构
[1] Donghua Univ, Shanghai Frontier Sci Ctr Adv Text, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
[3] Donghua Univ, Innovat Ctr Text Sci & Technol, Shanghai 201620, Peoples R China
[4] Hamburg Univ Technol, Inst Bioproc & Biosyst Engn, Hamburg, Germany
[5] Hua An Tang Biotech Grp Co Ltd, Guangzhou, Peoples R China
关键词
Poly(trimethylene ether) glycol; Bio-based thermoplastic elastomers; Microphase separation; Elastic fibers;
D O I
10.1016/j.eurpolymj.2024.113706
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Introducing the renewable poly(trimethylene ether glycol) (PO3G) as soft segments into bio-based poly(propylene terephthalate) (PTT), which is synthesized from the bio-based propylene glycol (PDO) monomer, results in thermoplastic polyester elastomers (PTT-PO3G) with superior thermomechanical properties. As the PO3G content in PTT-PO3G copolymers increased from 20 wt% to 60 wt%, the melting temperatures of these copolymers decreased from 220 to 174 degrees C, and the tensile strength decreased from 31.7 to 4.2 MPa with the Shore hardness falling from 60 to 26 D, whereas the elongation at break showed an increase tendency from 697 % to 1074 %. Characterizations utilizing dynamic thermomechanical analysis (DMA), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM) revealed the presence of microphase separations in PTT-PO3G copolymers. The strength and moisture regain of PTT-PO3G-20 elastic fibers fabricated via an eco-friendly melt spinning technique reach 1.42 cN/dtex and 1.52 %, which are 58 % and 407 % higher than those of traditional wet-spun Spandex (R) fibers, respectively. Surprisedly, the resilience of PTT-PO3G-20 fibers exceeded 96 % at an elongation of 20 %, demonstrating its promising potential as a sustainable alternative to Spandex (R) fibers in textile applications. The excellent thermodynamic properties indicate that the bio-based PTT-PO3G copolymers have great potential to replace traditional petroleum-based elastomers for promoting the sustainable and low-carbon global development.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Morphology, Dynamic Mechanical, and Electrical Properties of Bio-Based Poly(trimethylene terephthalate) Blends, Part 2: Poly(trimethylene terephthalate)/Poly(ether esteramide)/Polycarbonate Blends
    Kobayashi, Toshikazu
    Wood, Barbara A.
    Takemura, Akio
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 123 (02) : 1056 - 1067
  • [2] Synthesis and Characterizations of Poly(trimethylene terephthalate)-b-poly(tetramethylene glycol) Copolymers
    Liu, Feng
    Yao, Meng
    Run, Ming-tao
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [3] Synthesis, structure and properties of degradable thermoplastic elastomers based on poly(trimethylene terephthalate)
    Ukielski, Ryszard
    Kotowski, Dominik
    Rokicka, Joanna
    PRZEMYSL CHEMICZNY, 2012, 91 (11): : 2207 - 2211
  • [4] Crystallization, Morphology, and Electrical Properties of Bio-Based Poly(trimethylene terephthalate)/Poly(ether esteramide)/Ionomer Blends
    Kobayashi, Toshikazu
    Wood, Barbara A.
    Takemura, Akio
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (05) : 2714 - 2724
  • [5] Morphology, Dynamic Mechanical, and Electrical Properties of Bio-Based Poly(trimethylene terephthalate) Blends, Part 1: Poly(trimethylene terephthalate)/Poly(ether esteramide)/Polyethylene Glycol 400 Bis(2-ethylhexanoate) Blends
    Kobayashi, Toshikazu
    Wood, Barbara A.
    Blackman, Gregory S.
    Takemura, Akio
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (06) : 3519 - 3529
  • [6] Glass fiber-reinforced, bio-based poly(trimethylene terephthalate) for extrusion
    Ren, Yu
    Gavenonis, John
    Ai, Rina
    Huang, Ray
    Chervin, Christophe
    Tang, Yanshou
    Zhang, Jane
    Qian, Jack
    Yang, Gaopin
    Yu, Ting
    Ankrom, Linda S.
    GREEN MATERIALS, 2013, 1 (04) : 218 - 224
  • [7] Nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/polyethylene glycol copolymers
    Chen, Zhenming
    Yao, Chenguang
    Yang, Guisheng
    POLYMER TESTING, 2012, 31 (03) : 393 - 403
  • [8] Thermoplastic elastomers based on poly(lactide)-poly (trimethylene carbonate-co-caprolactone)-poly(lactide) triblock copolymers and their stereocomplexes
    Zhang, Z.
    Grijpma, D. W.
    Feijen, J.
    JOURNAL OF CONTROLLED RELEASE, 2006, 116 (02) : E29 - E31
  • [9] Bio-based poly(trimethylene terephthalate)/polyamide 56 blend fibers via melt spinning: Preparation, structure, and properties
    Wang, Aming
    Duan, Zeping
    Yu, Dongzheng
    Qin, Shihua
    Liu, Qingsheng
    Li, Dawei
    Li, Haoxuan
    Deng, Bingyao
    Xu, Weilin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (45)
  • [10] Understanding the morphology formation and properties of polyamide 6 and bio-based poly(trimethylene terephthalate) blends
    Codou, Amandine
    Misra, Manjusri
    Mohanty, Amar K.
    POLYMER ENGINEERING AND SCIENCE, 2018, 58 (12): : 2210 - 2218