Unsupervised Bayesian Surprise Detection in Spatial Audio with Convolutional Variational Autoencoder and LSTM Model

被引:0
|
作者
Khah, Arman Nik [1 ]
Htun, Chitsein [1 ]
Prakash, Ravi [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
关键词
360 degrees video; spatial audio; visual attention; Bayesian surprise; unsupervised learning; VAE-LSTM; AMBISONICS;
D O I
10.1145/3672406.3672422
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Understanding user visual attention (VA) is crucial for Field-of-View (FoV) prediction and resultant bandwidth optimization for 360 degrees video streaming. The influence of spatial audio on VA has been largely overlooked. Traditional methods, using saliency, characterize important stimuli as statistical outliers [4] but fail to capture the Temporal Evolution of Attention (TEA), where initially salient stimuli become routine and less attention-grabbing due to continual exposure [2, 20]. This paper introduces a novel unsupervised deep learning approach using a Convolutional Variational Autoencoder and Long Short-Term Memory (CVAE-LSTM) model to detect Bayesian surprise [2] in spatial audio streams, considering factors such as time, context, and user expectations. Our findings highlight the importance of temporal context in determining the surprisal value of audio events and the selective nature of sensory processing and attention in complex environments.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [1] Unsupervised dam anomaly detection with spatial-temporal variational autoencoder
    Shu, Xiaosong
    Bao, Tengfei
    Zhou, Yuhang
    Xu, Ruichen
    Li, Yangtao
    Zhang, Kang
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 39 - 55
  • [2] Anomaly Detection Using LSTM-Based Variational Autoencoder in Unsupervised Data in Power Grid
    Guha, Dibyajyoti
    Chatterjee, Rajdeep
    Sikdar, Biplab
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 4313 - 4323
  • [3] Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder
    Chen, Tingting
    Liu, Xueping
    Xia, Bizhong
    Wang, Wei
    Lai, Yongzhi
    IEEE ACCESS, 2020, 8 : 47072 - 47081
  • [4] Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things
    Kim, Dohyung
    Yang, Hyochang
    Chung, Minki
    Cho, Sungzoon
    Kim, Huijung
    Kim, Minhee
    Kim, Kyungwon
    Kim, Eunseok
    CONFERENCE PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT), 2018, : 67 - 71
  • [5] Unsupervised convolutional variational autoencoder deep embedding clustering for Raman spectra
    Guo, Yixin
    Jin, Weiqi
    Wang, Weilin
    Guo, Zongyu
    He, Yuqing
    ANALYTICAL METHODS, 2022, 14 (39) : 3898 - 3910
  • [6] Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
    Jang, Jong-Hwan
    Kim, Tae Young
    Lim, Hong-Seok
    Yoon, Dukyong
    PLOS ONE, 2021, 16 (12):
  • [7] Audio based depression detection using Convolutional Autoencoder
    Sardari, Sara
    Nakisa, Bahareh
    Rastgoo, Mohammed Naim
    Eklund, Peter
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [8] Unsupervised change detection using hierarchical convolutional autoencoder
    Bergamasco, Luca
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [9] Spam review detection using LSTM autoencoder: an unsupervised approach
    Sunil Saumya
    Jyoti Prakash Singh
    Electronic Commerce Research, 2022, 22 : 113 - 133
  • [10] Spam review detection using LSTM autoencoder: an unsupervised approach
    Saumya, Sunil
    Singh, Jyoti Prakash
    ELECTRONIC COMMERCE RESEARCH, 2022, 22 (01) : 113 - 133