Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches

被引:0
|
作者
Qadri, Syed Asif Ahmad [1 ]
Huang, Nen-Fu [2 ]
Wani, Taiba Majid [3 ]
Bhat, Showkat Ahmad [2 ,4 ]
机构
[1] Natl Tsing Hua Univ, Coll Elect Engn & Comp Sci, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300044, Taiwan
[3] Sapienza Univ Rome, Dept Comp Control & Management Engn, I-00185 Rome, Italy
[4] Natl Tsing Hua Univ, Ctr Innovat Incubator, Hsinchu 300044, Taiwan
关键词
Plant disease detection; image processing; machine learning; deep learning; convolutional neural network; CROPS; SEGMENTATION; TECHNOLOGIES; RECOGNITION; ALGORITHM; DATASET; REGION; THREAT; APPLE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As advancements in agricultural technology unfold, machine learning and deep learning approaches are gaining interest in robust plant disease identification. Early disease detection, integral to agricultural productivity, has propelled innovations across all phases of detection. This survey paper provides a meticulous examination of plant disease detection systems, elucidating data collection methodologies and underscoring the pivotal role of datasets in model training. The narrative navigates through the complex areas of data and image processing techniques, segueing into an exploration of various segmentation methods. The survey emphasizes the importance of feature extraction and selection techniques, illustrating their efficacy in increasing classification accuracy. It examines the classification process, embracing both traditional machine learning and avant-garde deep learning methods, with a particular spotlight on Convolutional Neural Networks (CNNs). The study examines over one hundred seminal papers, anatomizing their dataset utilizations, feature considerations, and classification strategies. Overall, the paper contemplates the challenges permeating this vibrant field, addressing critical issues such as dataset diversity, model generalization, and real-world applicability. Note to Practitioners-To ensure crop health and yield, timely and precise plant disease detection is crucial. Our research, titled "Advances And Challenges in Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches," examines the critical role of datasets, advanced image processing, and segmentation techniques in disease detection. This paper presents practitioners with a guide to the latest techniques for enhanced disease detection by emphasizing the significance of feature extraction and highlighting the capabilities of convolutional neural networks (CNNs). By understanding the highlighted challenges, such as dataset diversity and model generalization, industry professionals can better equip themselves to integrate these technological advancements into real-world agricultural applications.
引用
收藏
页码:2639 / 2670
页数:32
相关论文
共 50 条
  • [1] Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches
    Qadri, Syed Asif Ahmad
    Huang, Nen-Fu
    Wani, Taiba Majid
    Bhat, Showkat Ahmad
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2639 - 2670
  • [2] Using Deep Learning for Image-Based Plant Disease Detection
    Mohanty, Sharada P.
    Hughes, David P.
    Salathe, Marcel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [3] Image-based crack detection approaches: a comprehensive survey
    Priyanka Gupta
    Manish Dixit
    Multimedia Tools and Applications, 2022, 81 : 40181 - 40229
  • [4] Image-based crack detection approaches: a comprehensive survey
    Gupta, Priyanka
    Dixit, Manish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (28) : 40181 - 40229
  • [5] A comprehensive review on detection of plant disease using machine learning and deep learning approaches
    Jackulin C.
    Murugavalli S.
    Measurement: Sensors, 2022, 24
  • [6] Image-Based Detection of Plant Diseases: From Classical Machine Learning to Deep Learning Journey
    Khan, Rehan Ullah
    Khan, Khalil
    Albattah, Waleed
    Qamar, Ali Mustafa
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [7] A Comprehensive Survey on Computer Vision Based Approaches for Moving Object Detection
    Roy, Sourav Dey
    Bhowmik, Mrinal Kanti
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1531 - 1534
  • [8] Deep Learning for Image-Based Cassava Disease Detection
    Ramcharan, Amanda
    Baranowski, Kelsee
    McCloskey, Peter
    Ahmed, Babuali
    Legg, James
    Hughes, David P.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [9] Deep learning for image-based cancer detection and diagnosis - A survey
    Hu, Zilong
    Tang, Jinshan
    Wang, Ziming
    Zhang, Kai
    Zhang, Ling
    Sun, Qingling
    PATTERN RECOGNITION, 2018, 83 : 134 - 149
  • [10] Image-based Plant Diseases Detection using Deep Learning
    Panchal A.V.
    Patel S.C.
    Bagyalakshmi K.
    Kumar P.
    Khan I.R.
    Soni M.
    Materials Today: Proceedings, 2023, 80 : 3500 - 3506